Platelet GP IIIa Pl(A) polymorphisms display different sensitivities to agonists
Authors
Michelson, Alan D.Furman, Mark I.
Goldschmidt-Clermont, P.
Mascelli, Mary Ann
Hendrix, Craig
Coleman, Lindsay
Hamlington, Jeannette
Barnard, Marc R.
Kickler, Thomas
Christie, Douglas J.
Kundu, Sourav
Bray, Paul F.
UMass Chan Affiliations
Department of PediatricsDocument Type
Journal ArticlePublication Date
2000-03-07Keywords
Adenosine DiphosphateAdult
Amino Acid Substitution
Antibodies, Monoclonal
Aspirin
Blood Platelets
Cell Membrane
Dose-Response Relationship, Drug
Female
Fibrinogen
Gene Dosage
Genotype
Humans
Immunoglobulin Fab Fragments
Male
P-Selectin
Platelet Aggregation
Platelet Aggregation Inhibitors
Platelet Glycoprotein GPIIb-IIIa Complex
Polymorphism, Genetic
Reference Values
Hematology
Oncology
Pediatrics
Metadata
Show full item recordAbstract
BACKGROUND: Both inherited predisposition and platelet hyperreactivity have been associated with ischemic coronary events, but mechanisms that support genetic differences among platelets from different subjects are generally lacking. Associations between the platelet Pl(A2) polymorphism of GP IIIa and coronary syndromes raise the question as to whether this inherited variation may contribute to platelet hyperreactivity. METHODS AND RESULTS: In this study, we characterized functional parameters in platelets from healthy donors with the Pl(A) (HPA-1) polymorphism, a Leu (Pl(A1)) to Pro (Pl(A2)) substitution at position 33 of the GP IIIa subunit of the platelet GP IIb/IIIa receptor (integrin alpha(IIb)beta(3)). We studied 56 normal donors (20 Pl(A1,A1), 20 Pl(A1,A2), and 16 Pl(A2,A2)). Compared with Pl(A1,A1) platelets, Pl(A2)-positive platelets showed a gene dosage effect for significantly greater surface-expressed P-selectin, GP IIb/IIIa-bound fibrinogen, and activated GP IIb/IIIa in response to low-dose ADP. Surface expression of GP IIb/IIIa was similar in resting platelets of all 3 genotypes but was significantly greater on Pl(A2,A2) platelets after ADP stimulation (P=0.003 versus Pl(A1,A1); P=0.03 versus Pl(A1,A2)). Pl(A1,A2) platelets were more sensitive to inhibition of aggregation by pharmacologically relevant concentrations of aspirin and abciximab. CONCLUSIONS: Pl(A2)-positive platelets displayed a lower threshold for activation, and platelets heterozygous for Pl(A) alleles showed increased sensitivity to 2 antiplatelet drugs. These in vitro platelet studies may have relevance for in vivo thrombotic conditions.Source
Circulation. 2000 Mar 7;101(9):1013-8. doi: 10.1161/01.CIR.101.9.1013DOI
10.1161/01.CIR.101.9.1013Permanent Link to this Item
http://hdl.handle.net/20.500.14038/43343PubMed ID
10704169Related Resources
Link to article in PubMedae974a485f413a2113503eed53cd6c53
10.1161/01.CIR.101.9.1013
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Evaluation of platelet function by flow cytometryMichelson, Alan D.; Barnard, Marc R.; Krueger, Lori A.; Frelinger, Andrew L. III; Furman, Mark I. (2000-07-01)Platelet function in whole blood can be comprehensively evaluated by flow cytometry. Flow cytometry can be used to measure platelet reactivity, circulating activated platelets, platelet-platelet aggregates, leukocyte-platelet aggregates, procoagulant platelet-derived microparticles, and calcium flux. Clinical applications of whole blood flow cytometric assays of platelet function in disease states (e.g., acute coronary syndromes, angioplasty, and stroke) may include identification of patients who would benefit from additional antiplatelet therapy and prediction of ischemic events. Circulating monocyte-platelet aggregates appear to be a more sensitive marker of in vivo platelet activation than circulating P-selectin-positive platelets. Flow cytometry can also be used in the following clinical settings: monitoring of GPIIb-IIIa antagonist therapy, diagnosis of inherited deficiencies of platelet surface glycoproteins, diagnosis of storage pool disease, diagnosis of heparin-induced thrombocytopenia, and measurement of the rate of thrombopoiesis.
-
Flow cytometry: a clinical test of platelet functionMichelson, Alan D. (1996-06-15)
-
In vitro testing of fresh and lyophilized reconstituted human and baboon plateletsValeri, C. Robert; Macgregor, Hollace; Barnard, Marc R.; Summaria, L.; Michelson, Alan D.; Ragno, G. (2004-10-01)BACKGROUND: Studies have been performed on human fresh, liquid-preserved, and cryopreserved platelets (PLTs) to assess PLT-adhesive surface receptors, PLT membrane procoagulant activity, PLT aggregation, and thromboxane production. Lyophilization has been developed as a method to preserve PLTs. This study was performed to evaluate these measurements on human and baboon fresh and lyophilized reconstituted PLTs. STUDY DESIGN AND METHODS: In both human and baboon fresh and lyophilized PLTs, aggregation response and PLT production of thromboxane A2 were measured after stimulation, and PLT surface markers P-selectin, glycoprotein (GP) Ib, GPIIb-IIIa, and factor (F) V were measured before and after stimulation. RESULTS: Fresh PLTs responded to the dual agonists arachidonic acid and adenosine diphosphate (ADP) to aggregate and produce thromboxane A2, and in both the PLT surface markers P-selectin and GPIIb-IIIa increased and GPIb decreased after stimulation. Neither human nor baboon lyophilized reconstituted PLTs aggregated to dual agonists, and neither produced thromboxane A2, increased PLT surface markers P-selectin or GPIIb-IIIa, or decreased PLT GPIb after stimulation. Nevertheless, after recalcification the lyophilized reconstituted PLTs accumulated FV to a significantly greater degree than fresh PLTs. CONCLUSIONS: Lyophilized reconstituted PLTs exhibited modification of the PLT membrane that interfered with aggregation and thromboxane production, prevented increases in PLT P-selectin and GPIIb-IIIa and decreases in GPIb after stimulation, and increased FV accumulation after recalcification. The in vitro data suggest that lyophilized PLTs may have reduced in vivo survival. In vivo studies are needed to determine the survival and function of lyophilized PLTs.