Gene expression in chronic granulomatous disease and interferon-gamma receptor-deficient cells treated in vitro with interferon-gamma
Authors
Frazao, Josias B.Colombo, Martino
Simillion, Cedric
Bilican, Adem
Keller, Irene
Wuthrich, Daniel
Zhu, Zhiqing
Okoniewski, Michal J.
Bruggmann, Remy
Condino-Neto, Antonio
Newburger, Peter E.
UMass Chan Affiliations
Department of Pediatrics, Division of Hematology OncologyDocument Type
Journal ArticlePublication Date
2018-09-27Keywords
chronic granulomatous diseaseinterferon-γ
interferon-γ receptor deficiency
phagocyte
transcriptome
Biochemistry
Congenital, Hereditary, and Neonatal Diseases and Abnormalities
Genetic Phenomena
Hemic and Lymphatic Diseases
Immune System Diseases
Immunology and Infectious Disease
Metadata
Show full item recordAbstract
Interferon-gamma (IFN-gamma) plays an important role in innate and adaptive immunity against intracellular infections and is used clinically for the prevention and control of infections in chronic granulomatous disease (CGD) and inborn defects in the IFN-gamma/interleukin (IL)-12 axis. Using transcriptome profiling (RNA-seq), we sought to identify differentially expressed genes, transcripts and exons in Epstein-Barr virus-transformed B lymphocytes (B-EBV) cells from CGD patients, IFN-gamma receptor deficiency patients, and normal controls, treated in vitro with IFN-gamma for 48 hours. Our results show that IFN-gamma increased the expression of a diverse array of genes related to different cellular programs. In cells from normal controls and CGD patients, IFN-gamma-induced expression of genes relevant to oxidative killing, nitric oxide synthase pathway, proteasome-mediated degradation, antigen presentation, chemoattraction, and cell adhesion. IFN-gamma also upregulated genes involved in diverse stages of messenger RNA (mRNA) processing including pre-mRNA splicing, as well as others implicated in the folding, transport, and assembly of proteins. In particular, differential exon expression of WARS (encoding tryptophanyl-transfer RNA synthetase, which has an essential function in protein synthesis) induced by IFN-gamma in normal and CGD cells suggests that this gene may have an important contribution to the benefits of IFN-gamma treatment for CGD. Upregulation of mRNA and protein processing related genes in CGD and IFNRD cells could mediate some of the effects of IFN-gamma treatment. These data support the concept that IFN-gamma treatment may contribute to increased immune responses against pathogens through regulation of genes important for mRNA and protein processing.Source
J Cell Biochem. 2018 Sep 27. doi: 10.1002/jcb.27718. [Epub ahead of print] Link to article on publisher's site
DOI
10.1002/jcb.27718Permanent Link to this Item
http://hdl.handle.net/20.500.14038/43660PubMed ID
30260027Related Resources
ae974a485f413a2113503eed53cd6c53
10.1002/jcb.27718
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Role of WFS1 in Regulating Endoplasmic Reticulum Stress Signaling: A DissertationFonseca, Sonya G. (2009-02-24)The endoplasmic reticulum (ER) is a multi-functional cellular compartment that functions in protein folding, lipid biosynthesis, and calcium homeostasis. Perturbations to ER function lead to the dysregulation of ER homeostasis, causing the accumulation of unfolded and misfolded proteins in the cell. This is a state of ER stress. ER stress elicits a cytoprotective, adaptive signaling cascade to mitigate stress, the Unfolded Protein Response (UPR). As long as the UPR can moderate stress, cells can produce the proper amount of proteins and maintain a state of homeostasis. If the UPR, however, is dysfunctional and fails to achieve this, cells will undergo apoptosis. Diabetes mellitus is a group of metabolic disorders characterized by persistent high blood glucose levels. The pathogenesis of this disease involves pancreatic β-cell dysfunction: an abnormality in the primary function of the β-cell, insulin production and secretion. Activation of the UPR is critical to pancreatic β-cell survival, where a disruption in ER stress signaling can lead to cell death and consequently diabetes. There are several models of ER stress leading to diabetes. Wolcott-Rallison syndrome, for example, occurs when there is a mutation in the gene encoding one of the master regulators of the UPR, PKR-like ER kinase (PERK). In this dissertation, we show that Wolfram Syndrome 1 (WFS1), an ER transmembrane protein, is a component of the UPR and is a downstream target of two of the master regulators of the UPR, Inositol Requiring 1 (IRE1) and PERK. WFS1 mutations lead to Wolfram syndrome, a non-autoimmune form of type 1 diabetes accompanied by optical atrophy and other neurological disorders. It has been shown that patients develop diabetes due to the selective loss of their pancreatic β-cells. Here we define the underlying molecular mechanism of β-cell loss in Wolfram syndrome, and link this cell loss to ER stress and a dysfunction in a component of the UPR, WFS1. We show that WFS1 expression is localized to the β-cell of the pancreas, it is upregulated during insulin secretion and ER stress, and its inactivation leads to chronic ER stress and apoptosis. This dissertation also reveals the previously unknown function of WFS1 in the UPR. Positive regulation of the UPR has been extensively studied, however, the precise mechanisms of negative regulation of this signaling pathway have not. Here we report that WFS1 regulates a key transcription factor of the UPR, activating transcription factor 6 (ATF6), through the ubiquitin-proteasome pathway. WFS1 expression decreases expression levels of ATF6 target genes and represses ATF6-mediated activation of the ER stress response (ERSE) promoter. WFS1 recruits and stabilizes an E3 ubiquitin ligase, HMG-CoA reductase degradation protein 1 (HRD1), on the ER membrane. The WFS1-HRD1 complex recruits ATF6 to the proteasome and enhances its ubiquitination and proteasome-mediated degradation, leading to suppression of the UPR under non-stress conditions. In response to ER stress, ATF6 is released from WFS1 and activates the UPR to mitigate ER stress. This body of work reveals a novel role for WFS1 in the UPR, and a novel mechanism for regulating ER stress signaling. These findings also indicate that hyperactivation of the UPR can lead to cellular dysfunction and death. This supports the notion that tight regulation of ER stress signaling is crucial to cell survival. This unanticipated role of WFS1 for a feedback loop of the UPR is relevant to diseases caused by chronic hyperactivation of ER stress signaling network such as pancreatic β-cell death in diabetes and neurodegeneration.
-
Progress and prospects: gene therapy clinical trials (part 1)Alexander, B. L.; Ali, R. R.; Alton, E.W.F.; Bainbridge, J. W.; Braun, S.; Cheng, S. H.; Flotte, Terence R.; Gaspar, H. B.; Grez, M.; Griesenbach, U.; et al. (2007-10-03)Over the last two decades gene therapy has moved from preclinical to clinical studies for many diseases ranging from single gene disorders such as cystic fibrosis and Duchenne muscular dystrophy, to more complex diseases such as cancer and cardiovascular disorders. Gene therapy for severe combined immunodeficiency (SCID) is the most significant success story to date, but progress in many other areas has been significant. We asked 20 leaders in the field succinctly to summarize and comment on clinical gene therapy research in their respective areas of expertise and these are published in two parts in the Progress and Prospect series.
-
Gaucher disease in the COVID-19 pandemic environment: The good, the bad and the unknownGinns, Edward I.; Ryan, Emory; Sidransky, Ellen (2021-04-01)Early in the course of the novel coronavirus disease 2019 (COVID-19) pandemic, the rare disease community anticipated that patients with lysosomal and other metabolic disorders would be at increased risk for poor disease outcomes and mortality from the SARS-CoV-2 virus.