We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
AIP1 is critical in transducing IRE1-mediated endoplasmic reticulum stress response
Authors
Luo, DianhongHe, Yun
Zhang, Haifeng
Yu, Luyang
Chen, Hong
Xu, Zhe
Tang, Shibo
Urano, Fumihiko
Min, Wang
Document Type
Journal ArticlePublication Date
2008-02-19Keywords
AnimalsApoptosis
Cattle
DNA-Binding Proteins
Dimerization
Endoplasmic Reticulum
Endothelial Cells
Enzyme Activation
Humans
JNK Mitogen-Activated Protein Kinases
MAP Kinase Kinase Kinase 5
Membrane Proteins
Mice
Mice, Knockout
Protein Binding
Protein Structure, Tertiary
Protein-Serine-Threonine Kinases
*Signal Transduction
Transcription Factors
ras GTPase-Activating Proteins
Genetics and Genomics
Metadata
Show full item recordAbstract
We have previously shown that ASK1-interacting protein 1 (AIP1) transduces tumor necrosis factor-induced ASK1-JNK signaling. Because endoplasmic reticulum (ER) stress activates ASK1-JNK signaling cascade, we investigated the role of AIP1 in ER stress-induced signaling. We created AIP1-deficient mice (AIP1-KO) from which mouse embryonic fibroblasts and vascular endothelial cells were isolated. AIP1-KO cells show dramatic reductions in ER stress-induced, but not oxidative stress-induced, ASK1-JNK activation and cell apoptosis. The ER stress-induced IRE1-JNK/XBP-1 axis, but not the PERK-CHOP1 axis, is blunted in AIP1-KO cells. ER stress induced formation of an AIP1-IRE1 complex, and the PH domain of AIP1 is critical for the IRE1 interaction. Furthermore, reconstitution of AIP1-KO cells with AIP1 wild type, not an AIP1 mutant with a deletion of the PH domain (AIP1-DeltaPH), restores ER stress-induced IRE1-JNK/XBP-1 signaling. AIP1-IRE1 association facilitates IRE1 dimerization, a critical step for activation of IRE1 signaling. More importantly, AIP1-KO mice show impaired ER stress-induced IRE1-dependent signaling in vivo. We conclude that AIP1 is essential for transducing the IRE1-mediated ER stress response.Source
J Biol Chem. 2008 May 2;283(18):11905-12. Epub 2008 Feb 15. Link to article on publisher's siteDOI
10.1074/jbc.M710557200Permanent Link to this Item
http://hdl.handle.net/20.500.14038/44119PubMed ID
18281285Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1074/jbc.M710557200
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
A mammalian scaffold complex that selectively mediates MAP kinase activationWhitmarsh, Alan J.; Cavanagh, Julie; Tournier, Cathy; Yasuda, Jun; Davis, Roger J. (1998-09-11)The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is activated by the exposure of cells to multiple forms of stress. A putative scaffold protein was identified that interacts with multiple components of the JNK signaling pathway, including the mixed-lineage group of MAP kinase kinase kinases (MLK), the MAP kinase kinase MKK7, and the MAP kinase JNK. This scaffold protein selectively enhanced JNK activation by the MLK signaling pathway. These data establish that a mammalian scaffold protein can mediate activation of a MAP kinase signaling pathway.
-
Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathwaysKelkar, Nyaya; Standen, Claire L.; Davis, Roger J. (2005-03-16)The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway.
-
Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6Enslen, Herve; Raingeaud, Joel; Davis, Roger J. (1998-01-27)The cellular response to treatment with proinflammatory cytokines or exposure to environmental stress is mediated, in part, by the p38 group of mitogen-activated protein (MAP) kinases. We report the molecular cloning of a novel isoform of p38 MAP kinase, p38 beta 2. This p38 MAP kinase, like p38 alpha, is inhibited by the pyridinyl imidazole drug SB203580. The p38 MAP kinase kinase MKK6 is identified as a common activator of p38 alpha, p38 beta 2, and p38 gamma MAP kinase isoforms, while MKK3 activates only p38 alpha and p38 gamma MAP kinase isoforms. The MKK3 and MKK6 signal transduction pathways are therefore coupled to distinct, but overlapping, groups of p38 MAP kinases.