We are upgrading the repository! A content freeze is in effect until December 11, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Role of adenine nucleotides, adenosine, and inorganic phosphate in the regulation of skeletal muscle blood flow
UMass Chan Affiliations
Department of PhysiologyDocument Type
Journal ArticlePublication Date
1971-10-01Keywords
Adenine NucleotidesAdenosine
Adenosine Diphosphate
Adenosine Monophosphate
Adenosine Triphosphate
Animals
Anura
Dogs
Extracellular Space
Hindlimb
Muscle Contraction
Muscles
Oxygen Consumption
Phosphates
Rana pipiens
*Regional Blood Flow
Vascular Resistance
Musculoskeletal Diseases
Physiology
Metadata
Show full item recordSource
Circ Res. 1971 Oct;29(4):375-84.Permanent Link to this Item
http://hdl.handle.net/20.500.14038/44127PubMed ID
5315522Related Resources
Link to article in PubMedCollections
Related items
Showing items related by title, author, creator and subject.
-
Endogenous adenosine inhibits CNS terminal Ca(2+) currents and exocytosisKnott, Thomas K.; Marrero, Hector G.; Fenton, Richard A.; Custer, Edward E. Jr.; Dobson, James G. Jr.; Lemos, Jose R. (2007-02-01)Bursts of action potentials (APs) are crucial for the release of neurotransmitters from dense core granules. This has been most definitively shown for neuropeptide release in the hypothalamic neurohypophysial system (HNS). Why such bursts are necessary, however, is not well understood. Thus far, biophysical characterization of channels involved in depolarization-secretion coupling cannot completely explain this phenomenon at HNS terminals, so purinergic feedback mechanisms have been proposed. We have previously shown that ATP, acting via P2X receptors, potentiates release from HNS terminals, but that its metabolite adenosine, via A(1) receptors acting on transient Ca(2+) currents, inhibit neuropeptide secretion. We now show that endogenous adenosine levels are sufficient to cause tonic inhibition of transient Ca(2+) currents and of stimulated exocytosis in HNS terminals. Initial non-detectable adenosine levels in the static bath increased to 2.9 microM after 40 min. These terminals exhibit an inhibition (39%) of their transient inward Ca(2+) current in a static bath when compared to a constant perfusion stream. CPT, an A(1) adenosine receptor antagonist, greatly reduced this tonic inhibition. An ecto-ATPase antagonist, ARL-67156, similarly reduced tonic inhibition, but CPT had no further effect, suggesting that endogenous adenosine is due to breakdown of released ATP. Finally, stimulated capacitance changes were greatly enhanced (600%) by adding CPT to the static bath. Thus, endogenous adenosine functions at terminals in a negative-feedback mechanism and, therefore, could help terminate peptide release by bursts of APs initiated in HNS cell bodies. This could be a general mechanism for controlling transmitter release in these and other CNS terminals.
-
Human deafness mutation of myosin VI (C442Y) accelerates the ADP dissociation rateSato, Osamu; White, Howard D.; Inoue, Akira; Belknap, Betty; Ikebe, Reiko; Ikebe, Mitsuo (2004-05-05)The missense mutation of Cys(442) to Tyr of myosin VI causes progressive postlingual sensorineural deafness. Here we report the affects of the C442Y mutation on the kinetics of the actomyosin ATP hydrolysis mechanism and motor function of myosin VI. The largest changes in the kinetic mechanism of ATP hydrolysis produced by the C442Y mutation are about 10-fold increases in the rate of ADP dissociation from both myosin VI and actomyosin VI. The rates of ADP dissociation from acto-C442Y myosin VI-ADP and C442Y myosin VI-ADP are 20-40 times more rapid than the steady state rates and cannot be the rate-limiting steps of the hydrolysis mechanism in the presence or absence of actin. The 2-fold increase in the actin gliding velocity of C442Y compared with wild type (WT) may be explained at least in part by the more rapid rate of ADP dissociation. The C442Y myosin VI has a significant increase ( approximately 10-fold) in the steady state ATPase rate in the absence of actin relative to WT myosin VI. The steady state rate of actin-activated ATP hydrolysis is unchanged by the C442Y mutation at low (<10(-7) m) calcium but is calcium-sensitive with a 1.6-fold increase at high ( approximately 10(-4) m) calcium that does not occur with WT. The actin gliding velocity of the C442Y mutant decreases significantly at low surface density of myosin VI, suggesting that the mutation hampers the processive movement of myosin VI.
-
Drosophila myosin VIIA is a high duty ratio motor with a unique kinetic mechanismWatanabe, Shinya; Ikebe, Reiko; Ikebe, Mitsuo (2006-01-18)Mutations of myosin VIIA cause deafness in various species from human and mice to Zebrafish and Drosophila. We analyzed the kinetic mechanism of the ATPase cycle of Drosophila myosin VIIA by using a single-headed construct with the entire neck domain. The steady-state ATPase activity (0.06 s(-1)) was markedly activated by actin to yield V(max) and K(ATPase) of 1.72 s(-1) and 3.2 microm, respectively. The most intriguing finding is that the ATP hydrolysis predominantly takes place in the actin-bound form (actin-attached hydrolysis) for the actomyosin VIIA ATPase reaction. The ATP hydrolysis rate was much faster for the actin-attached form than the dissociated form, in contrast to other myosins reported so far. Both the ATP hydrolysis step and the phosphate release step were significantly faster than the entire ATPase cycle rate, thus not rate-determining. The rate of ADP dissociation from actomyosin VIIA was 1.86 s(-1), which was comparable with the overall ATPase cycle rate, thus assigned to be a rate-determining step. The results suggest that Drosophila myosin VIIA spends the majority of the ATPase cycle in an actomyosin.ADP form, a strong actin binding state. The duty ratio calculated from our kinetic model was approximately 0.9. Therefore, myosin VIIA is classified to be a high duty ratio motor. The present results suggested that myosin VIIA can be a processive motor to serve cargo trafficking in cells once it forms a dimer structure.