A Finite Element Method to Predict Adverse Events in Intracranial Stenting Using Microstents: In Vitro Verification and Patient Specific Case Study
Authors
Iannaccone, FrancescoDe Beule, Matthieu
De Bock, Sander
Van der Bom, Imramsjah M.J.
Gounis, Matthew J.
Wakhloo, Ajay K.
Boone, Matthieu
Verhegghe, Benedict
Segers, Patrick
UMass Chan Affiliations
Department of RadiologyDocument Type
Journal ArticlePublication Date
2015-11-30Keywords
AneurysmApposition
Cerebral
Hugging
Incomplete
Intra-cranial
Microstent
Stenting
Biomedical Devices and Instrumentation
Cardiovascular Diseases
Medical Biophysics
Nervous System Diseases
Radiology
Metadata
Show full item recordAbstract
Clinical studies have demonstrated the efficacy of stent supported coiling for intra-cranial aneurysm treatment. Despite encouraging outcomes, some matters are yet to be addressed. In particular closed stent designs are influenced by the delivery technique and may suffer from under-expansion, with the typical effect of "hugging" the inner curvature of the vessel which seems related to adverse events. In this study we propose a novel finite element (FE) environment to study potential failure able to reproduce the microcatheter "pull-back" delivery technique. We first verified our procedure with published in vitro data and then replicated the intervention on one patient treated with a 4.5 x 22 mm Enterprise microstent (Codman Neurovascular; Raynham MA, USA). Results showed good agreement with the in vitro test, catching both size and location of the malapposed area. A simulation of a 28 mm stent in the same geometry highlighted the impact of the delivery technique, which leads to larger area of malapposition. The patient specific simulation matched the global stent configuration and zones prone to malapposition shown on the clinical images with difference in tortuosity between actual and virtual treatment around 2.3%. We conclude that the presented FE strategy provides an accurate description of the stent mechanics and, after further in vivo validation and optimization, will be a tool to aid clinicians to anticipate the acute procedural outcome avoiding poor initial results.Source
Ann Biomed Eng. 2015 Nov 30. Link to article on publisher's siteDOI
10.1007/s10439-015-1505-2Permanent Link to this Item
http://hdl.handle.net/20.500.14038/48047PubMed ID
26620777Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1007/s10439-015-1505-2