• Login
    View Item 
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Radiology
    • Radiology Publications
    • View Item
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Radiology
    • Radiology Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsProfilesView

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Towards standardization of x-ray beam filters in digital mammography and digital breast tomosynthesis: Monte Carlo simulations and analytical modelling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Shrestha, Suman
    Vedantham, Srinivasan
    Karellas, Andrew
    UMass Chan Affiliations
    Department of Radiology
    Document Type
    Journal Article
    Publication Date
    2017-03-07
    Keywords
    Medical Biophysics
    Physics
    Radiology
    
    Metadata
    Show full item record
    Link to Full Text
    https://doi.org/10.1088/1361-6560/aa58c8
    Abstract
    In digital breast tomosynthesis and digital mammography, the x-ray beam filter material and thickness vary between systems. Replacing K-edge filters with Al was investigated with the intent to reduce exposure duration and to simplify system design. Tungsten target x-ray spectra were simulated with K-edge filters (50 microm Rh; 50 microm Ag) and Al filters of varying thickness. Monte Carlo simulations were conducted to quantify the x-ray scatter from various filters alone, scatter-to-primary ratio (SPR) with compressed breasts, and to determine the radiation dose to the breast. These data were used to analytically compute the signal-difference-to-noise ratio (SDNR) at unit (1 mGy) mean glandular dose (MGD) for W/Rh and W/Ag spectra. At SDNR matched between K-edge and Al filtered spectra, the reductions in exposure duration and MGD were quantified for three strategies: (i) fixed Al thickness and matched tube potential in kilovolts (kV); (ii) fixed Al thickness and varying the kV to match the half-value layer (HVL) between Al and K-edge filtered spectra; and, (iii) matched kV and varying the Al thickness to match the HVL between Al and K-edge filtered spectra. Monte Carlo simulations indicate that the SPR with and without the breast were not different between Al and K-edge filters. Modelling for fixed Al thickness (700 microm) and kV matched to K-edge filtered spectra, identical SDNR was achieved with 37-57% reduction in exposure duration and with 2-20% reduction in MGD, depending on breast thickness. Modelling for fixed Al thickness (700 microm) and HVL matched by increasing the kV over (0,4) range, identical SDNR was achieved with 62-65% decrease in exposure duration and with 2-24% reduction in MGD, depending on breast thickness. For kV and HVL matched to K-edge filtered spectra by varying Al filter thickness over (700, 880) microm range, identical SDNR was achieved with 23-56% reduction in exposure duration and 2-20% reduction in MGD, depending on breast thickness. These simulations indicate that increased fluence with Al filter of fixed or variable thickness substantially decreases exposure duration while providing for similar image quality with moderate reduction in MGD.
    Source
    Phys Med Biol. 2017 Mar 7;62(5):1969-1993. Epub 2017 Jan 11. Link to article on publisher's site
    DOI
    10.1088/1361-6560/aa58c8
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/48099
    PubMed ID
    28075335
    Related Resources
    Link to Article in PubMed
    ae974a485f413a2113503eed53cd6c53
    10.1088/1361-6560/aa58c8
    Scopus Count
    Collections
    Radiology Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Works found in eScholarship@UMassChan are protected by copyright unless otherwise indicated.
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.