• Login
    View Item 
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Radiology
    • Radiology Publications
    • View Item
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Radiology
    • Radiology Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsProfilesView

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Motion-compensated image reconstruction vs postreconstruction correction in respiratory-binned SPECT with standard and reduced-dose acquisitions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Song, Chao
    Yang, Yongyi
    Qi, Wenyuan
    Wernick, Miles N.
    Pretorius, P. Hendrik
    King, Michael A.
    UMass Chan Affiliations
    Department of Radiology
    Document Type
    Journal Article
    Publication Date
    2018-04-21
    Keywords
    cardiac SPECT
    motion-compensated reconstruction
    respiratory correction
    Medical Biophysics
    Physics
    Radiology
    
    Metadata
    Show full item record
    Link to Full Text
    https://doi.org/10.1002/mp.12932
    Abstract
    PURPOSE: Cardiac perfusion images in single-photon emission computed tomography (SPECT) can suffer from respiratory motion blur. We investigated a reconstruction approach for correcting respiratory motion in respiratory-binned acquisitions and assessed the benefit of this approach in both standard dose and reduced dose. METHODS: We modeled the acquired data from different respiratory bins by a joint probability distribution which was parameterized with respect to a common reference bin. The acquired data from all the respiratory bins were then utilized simultaneously for determining the source distribution in the reference bin using maximum a posteriori (MAP) estimation. We evaluated this approach with simulated imaging data and ten sets of clinical acquisitions, and compared it with a postreconstruction motion correction approach developed previously. We quantified the accuracy of the reconstruction results both at standard dose and with imaging dose reduced by 50% and 75%, respectively. RESULTS: The proposed motion-compensated reconstruction (MCR) approach led to improved reconstruction of the myocardium in terms of both noise level and LV wall resolution. Compared to traditional acquisition (without motion correction), the proposed approach reduced the mean squared error of the image intensity in the myocardium by 27.59%, 20.59%, and 12.05% at full, half-, and quarter dose, respectively; the LV resolution, quantified by the full width at half-maximum (FWHM), was improved by 17.34%, 14.35%, and 12.95% at full, half-, and quarter dose, respectively; in addition, the proposed approach also improved the perfusion defect detectability at both full dose and reduced dose. Furthermore, with motion correction, the reconstruction results obtained at half-dose were comparable to that obtained at full dose without correction. Similar improvements were also demonstrated in the clinical acquisitions at different dose levels. CONCLUSIONS: Respiratory motion correction in perfusion SPECT can improve the reconstruction of the myocardium at both standard and reduced dose. At half-dose, the results obtained with motion correction are comparable to that of traditional reconstruction obtained at full dose. MCR can be more accurate than postreconstruction correction.
    Source

    Med Phys. 2018 Apr 21. doi: 10.1002/mp.12932. Link to article on publisher's site

    DOI
    10.1002/mp.12932
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/48283
    PubMed ID
    29679508
    Related Resources

    Link to Article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.1002/mp.12932
    Scopus Count
    Collections
    Radiology Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Works found in eScholarship@UMassChan are protected by copyright unless otherwise indicated.
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.