Show simple item record

dc.contributor.authorSong, Chao
dc.contributor.authorYang, Yongyi
dc.contributor.authorRamon, Albert Juan
dc.contributor.authorWernick, Miles N.
dc.contributor.authorPretorius, P. Hendrik
dc.contributor.authorJohnson, Karen L.
dc.contributor.authorSlomka, Piotr J.
dc.contributor.authorKing, Michael A.
dc.date2022-08-11T08:10:48.000
dc.date.accessioned2022-08-23T17:20:26Z
dc.date.available2022-08-23T17:20:26Z
dc.date.issued2018-07-30
dc.date.submitted2018-08-09
dc.identifier.citation<p>J Nucl Cardiol. 2018 Jul 30. doi: 10.1007/s12350-018-1374-9. [Epub ahead of print] <a href="https://doi.org/10.1007/s12350-018-1374-9">Link to article on publisher's site</a></p>
dc.identifier.issn1071-3581 (Linking)
dc.identifier.doi10.1007/s12350-018-1374-9
dc.identifier.pmid30062470
dc.identifier.urihttp://hdl.handle.net/20.500.14038/48302
dc.description.abstractBACKGROUND: In cardiac SPECT perfusion imaging, respiratory motion can cause non-uniform blurring in the reconstructed myocardium. We investigate the potential benefit of respiratory correction with respiratory-binned acquisitions, both at standard dose and at reduced dose, for defect detection and for left ventricular (LV) wall resolution. METHODS: We applied two reconstruction methods for respiratory motion correction: post-reconstruction motion correction (PMC) and motion-compensated reconstruction (MCR), and compared with reconstruction without motion correction (Non-MC). We quantified the presence of perfusion defects in reconstructed images by using the total perfusion deficit (TPD) scores and conducted receiver-operating-characteristic (ROC) studies using TPD. We quantified the LV spatial resolution by using the FWHM of its cross-sectional intensity profile. RESULTS: The values in the area-under-the-ROC-curve (AUC) achieved by MCR, PMC, and Non-MC at standard dose were 0.835, 0.830, and 0.798, respectively. Similar AUC improvements were also obtained by MCR and PMC over Non-MC at 50%, 25%, and 12.5% of full dose. Improvements in LV resolution were also observed with motion correction. CONCLUSIONS: Respiratory-binned acquisitions can improve perfusion-defect detection accuracy over traditional reconstruction both at standard dose and at reduced dose. Motion correction may contribute to achieving further dose reduction while maintaining the diagnostic accuracy of traditional acquisitions.
dc.language.isoen_US
dc.relation<p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=30062470&dopt=Abstract">Link to Article in PubMed</a></p>
dc.relation.urlhttps://doi.org/10.1007/s12350-018-1374-9
dc.subjectCAD
dc.subjectMPI
dc.subjectSPECT
dc.subjectimage reconstruction
dc.subjectCardiology
dc.subjectCardiovascular System
dc.subjectNuclear
dc.subjectRadiology
dc.titleImproving perfusion defect detection with respiratory motion correction in cardiac SPECT at standard and reduced doses
dc.typeJournal Article
dc.source.journaltitleJournal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/radiology_pubs/413
dc.identifier.contextkey12632459
html.description.abstract<p>BACKGROUND: In cardiac SPECT perfusion imaging, respiratory motion can cause non-uniform blurring in the reconstructed myocardium. We investigate the potential benefit of respiratory correction with respiratory-binned acquisitions, both at standard dose and at reduced dose, for defect detection and for left ventricular (LV) wall resolution.</p> <p>METHODS: We applied two reconstruction methods for respiratory motion correction: post-reconstruction motion correction (PMC) and motion-compensated reconstruction (MCR), and compared with reconstruction without motion correction (Non-MC). We quantified the presence of perfusion defects in reconstructed images by using the total perfusion deficit (TPD) scores and conducted receiver-operating-characteristic (ROC) studies using TPD. We quantified the LV spatial resolution by using the FWHM of its cross-sectional intensity profile.</p> <p>RESULTS: The values in the area-under-the-ROC-curve (AUC) achieved by MCR, PMC, and Non-MC at standard dose were 0.835, 0.830, and 0.798, respectively. Similar AUC improvements were also obtained by MCR and PMC over Non-MC at 50%, 25%, and 12.5% of full dose. Improvements in LV resolution were also observed with motion correction.</p> <p>CONCLUSIONS: Respiratory-binned acquisitions can improve perfusion-defect detection accuracy over traditional reconstruction both at standard dose and at reduced dose. Motion correction may contribute to achieving further dose reduction while maintaining the diagnostic accuracy of traditional acquisitions.</p>
dc.identifier.submissionpathradiology_pubs/413
dc.contributor.departmentDepartment of Radiology


This item appears in the following Collection(s)

Show simple item record