• Login
    View Item 
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Radiology
    • Radiology Publications
    • View Item
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Radiology
    • Radiology Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Amino terminus of cardiac myosin binding protein-C regulates cardiac contractility

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Authors
    Lynch, Thomas L. 4th
    Lee, Kyounghwan
    Craig, Roger W.
    Sadayappan, Sakthivel
    UMass Chan Affiliations
    Craig Lab
    Division of Cell Biology and Imaging, Department of Radiology
    Document Type
    Journal Article
    Publication Date
    2021-03-26
    Keywords
    Amino Acids, Peptides, and Proteins
    Cardiovascular System
    Cell Biology
    Cellular and Molecular Physiology
    
    Metadata
    Show full item record
    Link to Full Text
    https://doi.org/10.1016/j.yjmcc.2021.03.009
    Abstract
    Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) regulates cardiac contraction through modulation of actomyosin interactions mediated by the protein's amino terminal (N')-region (C0-C2 domains, 358 amino acids). On the other hand, dephosphorylation of cMyBP-C during myocardial injury results in cleavage of the 271 amino acid C0-C1f region and subsequent contractile dysfunction. Yet, our current understanding of amino terminus region of cMyBP-C in the context of regulating thin and thick filament interactions is limited. A novel cardiac-specific transgenic mouse model expressing cMyBP-C, but lacking its C0-C1f region (cMyBP-C(C0-C1f)), displayed dilated cardiomyopathy, underscoring the importance of the N'-region in cMyBP-C. Further exploring the molecular basis for this cardiomyopathy, in vitro studies revealed increased interfilament lattice spacing and rate of tension redevelopment, as well as faster actin-filament sliding velocity within the C-zone of the transgenic sarcomere. Moreover, phosphorylation of the unablated phosphoregulatory sites was increased, likely contributing to normal sarcomere morphology and myoarchitecture. These results led us to hypothesize that restoration of the N'-region of cMyBP-C would return actomyosin interaction to its steady state. Accordingly, we administered recombinant C0-C2 (rC0-C2) to permeabilized cardiomyocytes from transgenic, cMyBP-C null, and human heart failure biopsies, and we found that normal regulation of actomyosin interaction and contractility was restored. Overall, these data provide a unique picture of selective perturbations of the cardiac sarcomere that either lead to injury or adaptation to injury in the myocardium.
    Source

    Lynch TL 4th, Kumar M, McNamara JW, Kuster DWD, Sivaguru M, Singh RR, Previs MJ, Lee KH, Kuffel G, Zilliox MJ, Lin BL, Ma W, Gibson AM, Blaxall BC, Nieman ML, Lorenz JN, Leichter DM, Leary OP, Janssen PML, de Tombe PP, Gilbert RJ, Craig R, Irving T, Warshaw DM, Sadayappan S. Amino terminus of cardiac myosin binding protein-C regulates cardiac contractility. J Mol Cell Cardiol. 2021 Mar 26;156:33-44. doi: 10.1016/j.yjmcc.2021.03.009. Epub ahead of print. PMID: 33781820. Link to article on publisher's site

    DOI
    10.1016/j.yjmcc.2021.03.009
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/48507
    PubMed ID
    33781820
    Notes

    Full author list omitted for brevity. For the full list of authors, see article.

    Related Resources

    Link to Article in PubMed

    ae974a485f413a2113503eed53cd6c53
    10.1016/j.yjmcc.2021.03.009
    Scopus Count
    Collections
    Radiology Publications
    Padrón-Craig Lab

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.