Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo
Authors
Biscans, AnnabelleColes, Andrew H.
Haraszti, Reka A
Echeverria, Dimas
Hassler, Matthew R.
Osborn, Maire F.
Khvorova, Anastasia
Document Type
Journal ArticlePublication Date
2019-02-20Keywords
Small interfering RNAsiRNA
lipids
therapeutics
Biochemistry, Biophysics, and Structural Biology
Genetic Phenomena
Genetics and Genomics
Lipids
Nucleic Acids, Nucleotides, and Nucleosides
Metadata
Show full item recordAbstract
Small interfering RNA (siRNA)-based therapies are proving to be efficient for treating liver-associated disorders. However, extra-hepatic delivery remains challenging, limiting therapeutic siRNA utility. We synthesized a panel of fifteen lipid-conjugated siRNAs and systematically evaluated the impact of conjugate on siRNA tissue distribution and efficacy. Generally, conjugate hydrophobicity defines the degree of clearance and the liver-to-kidney distribution profile. In addition to primary clearance tissues, several conjugates achieve significant siRNA accumulation in muscle, lung, heart, adrenal glands and fat. Oligonucleotide distribution to extra-hepatic tissues with some conjugates was significantly higher than with cholesterol, a well studied conjugate, suggesting that altering conjugate structure can enhance extra-hepatic delivery. These conjugated siRNAs enable functional gene silencing in lung, muscle, fat, heart and adrenal gland. Required levels for productive silencing vary (5-200 mug/g) per tissue, suggesting that the chemical nature of conjugates impacts tissue-dependent cellular/intracellular trafficking mechanisms. The collection of conjugated siRNA described here enables functional gene modulation in vivo in several extra-hepatic tissues opening these tissues for gene expression modulation. A systemic evaluation of a panel of conjugated siRNA, as reported here, has not previously been investigated and shows that chemical engineering of lipid siRNAs is essential to advance the RNA therapeutic field.Source
Nucleic Acids Res. 2019 Feb 20;47(3):1082-1096. doi: 10.1093/nar/gky1239. Link to article on publisher's site
DOI
10.1093/nar/gky1239Permanent Link to this Item
http://hdl.handle.net/20.500.14038/48846PubMed ID
30544191Related Resources
Rights
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Distribution License
http://creativecommons.org/licenses/by/4.0/ae974a485f413a2113503eed53cd6c53
10.1093/nar/gky1239
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.