Molecular Basis for Differential Patterns of Drug Resistance in Influenza N1 and N2 Neuraminidase
Authors
Prachanronarong, Kristina L.Ozen, Aysegul
Thayer, Kelly
Yilmaz, L. Safak
Zeldovich, Konstantin B.
Bolon, Daniel N.
Kowalik, Timothy F.
Jensen, Jeffrey D.
Finberg, Robert W.
Wang, Jennifer P.
Yilmaz, Nese Kurt
Schiffer, Celia A.
UMass Chan Affiliations
Department of MedicineDepartment of Microbiology and Physiological Systems
Program in Systems Biology
Program in Bioinformatics and Integrative Biology
Department of Biochemistry and Molecular Pharmacology
Document Type
Journal ArticlePublication Date
2016-12-13Keywords
BiochemistryMedicinal Chemistry and Pharmaceutics
Medicinal-Pharmaceutical Chemistry
Molecular Biology
Structural Biology
Virus Diseases
Metadata
Show full item recordAbstract
Neuraminidase (NA) inhibitors are used for the prevention and treatment of influenza A virus infections. Two subtypes of NA, N1 and N2, predominate in viruses that infect humans, but differential patterns of drug resistance have emerged in each subtype despite highly homologous active sites. To understand the molecular basis for the selection of these drug resistance mutations, structural and dynamic analyses on complexes of N1 and N2 NA with substrates and inhibitors were performed. Comparison of dynamic substrate and inhibitor envelopes and interactions at the active site revealed how differential patterns of drug resistance have emerged for specific drug resistance mutations, at residues I222, S246, and H274 in N1 and E119 in N2. Our results show that the differences in intermolecular interactions, especially van der Waals contacts, of the inhibitors versus substrates at the NA active site effectively explain the selection of resistance mutations in the two subtypes. Avoiding such contacts that render inhibitors vulnerable to resistance by better mimicking the dynamics and intermolecular interactions of substrates can lead to the development of novel inhibitors that avoid drug resistance in both subtypes.Source
J Chem Theory Comput. 2016 Dec 13;12(12):6098-6108. Epub 2016 Nov 17. Link to article on publisher's siteDOI
10.1021/acs.jctc.6b00703Permanent Link to this Item
http://hdl.handle.net/20.500.14038/48866PubMed ID
27951676Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1021/acs.jctc.6b00703