• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • T.H. Chan School of Medicine
    • Senior Scholars Program
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • T.H. Chan School of Medicine
    • Senior Scholars Program
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    RNA-Sequencing Reveals Direct Targets of Tumor Suppressor miR-203 in Human Mammary Epithelial Cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Boardman_Senior_Scholars_Abstr ...
    Size:
    318.2Kb
    Format:
    PDF
    Download
    Authors
    Boardman, Alexander P.
    Pedanou, Victoria E.
    Simone, Tessa M.
    Green, Michael R.
    Faculty Advisor
    Michael R. Green, MD, PhD
    UMass Chan Affiliations
    Department of Molecular, Cell, and Cancer Biology
    Senior Scholars Program
    School of Medicine
    Document Type
    Abstract
    Publication Date
    2017-05-03
    Keywords
    breast cancer
    metastasis
    anoikis
    epithelial cells
    miR-203
    Cancer Biology
    Cell Biology
    Genetics and Genomics
    Medical Education
    Molecular Biology
    Neoplasms
    Show allShow less
    
    Metadata
    Show full item record
    Abstract
    Background: Breast cancer is the leading cause of cancer-related mortality in women worldwide. Since a significant portion of cases present with or progress to metastatic disease, furthering our understanding of metastasis is critical to develop better treatments. Epithelial cells maintain contact with the extracellular matrix (ECM) predominantly via integrin engagement, a process required for tissue integrity and barrier function. In non-transformed cells, loss of ECM adhesion promotes a specialized form of programmed cell death, anoikis. In order for efficient metastasis to occur, breast tumor cells must evade anoikis. miR-203, known to be down-regulated in several cancers, was found by our lab to be induced ten-fold 24 hours following detachment in breast epithelial cells, but not invasive triple negative breast cancer (TNBC) cells, suggesting that miR-203 may participate in promoting anoikis. Interestingly, more invasive breast cancer cell lines have been shown to express miR-203 at significantly lower levels than those of less invasive lines. Objectives: Since restoration of miR-203 expression ectopically is not feasible in a clinical setting, we sought to identify and characterize miR-203 target genes in order to provide a pharmaceutical platform for restoration of anoikis sensitivity in metastatic breast cancer. Methods: We performed traditional RNA-sequencing (RNA-Seq) coupled with immunoprecipitation of the RNA-induced silencing complex (RISC; Ago2 RIP-Seq) in MCF-10A, an immortalized, but non-transformed breast epithelial cell line, overexpressing precursor miR-203 or an empty vector control. MDA-MB-231, triple negative ductal carcinoma cells, were used as our invasive comparison cell line. Results: Here we show that miR-203 induction in detached MCF-10A cells is due to loss of integrin signaling. Our coupled RNA-Seq and Ago2 RIP-Seq approach revealed 72 potential candidates, 42 of which were predicted miR-203 targets based on the TargetScan algorithm. We subjected the candidates to stringent characterization and found 9 bona-fide miR-203 targets that promote cell death when inhibited. Among these, WDR69, PRKAB1, PRPS2, and HBEGF were significantly elevated in TNBC tumor samples, as determined by RNA-Seq analysis in The Cancer Genome Atlas (TCGA). Conclusion: Understanding the mechanisms by which cells evade anoikis during tumor dissemination is crucial to developing more effective therapies in breast cancer. miR-203, which is expressed at very low levels in more invasive breast cancers, is a positive regulator of anoikis that is upregulated in response to loss of contact with the ECM. Our combined RNA-sequencing screen revealed 42 direct miR-203 targets. Inhibition of 9 bona-fide targets promoted cell death, suggesting that they are negative regulators of anoikis. WDR69, PRKAB1, PRPS2, and HBEGF were all significantly elevated in TNBC tumor samples relative to less invasive samples, likely a consequence of low miR-203 expression. The identified genes represent potential pharmaceutical targets for novel breast cancer therapies.
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/49303
    Notes

    Alexander P. Boardman participated in this study as a medical student as part of the Senior Scholars research program at the University of Massachusetts Medical School. This poster was presented on Senior Scholars Program Poster Presentation Day at the University of Massachusetts Medical School, Worcester, MA, on May 3, 2017.

    Rights
    Copyright is held by the author(s), with all rights reserved.
    Collections
    T.H. Chan School of Medicine Student Publications
    Senior Scholars Program

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.