Show simple item record

dc.contributor.authorImakaev, Maxim
dc.contributor.authorFudenberg, Geoffrey
dc.contributor.authorMcCord, Rachel Patton
dc.contributor.authorNaumova, Natalia
dc.contributor.authorGoloborodko, Anton
dc.contributor.authorLajoie, Bryan R.
dc.contributor.authorDekker, Job
dc.contributor.authorMirny, Leonid A.
dc.date2022-08-11T08:10:59.000
dc.date.accessioned2022-08-23T17:27:27Z
dc.date.available2022-08-23T17:27:27Z
dc.date.issued2012-09-02
dc.date.submitted2012-09-05
dc.identifier.citationNat Methods. 2012 Sep 2. doi: 10.1038/nmeth.2148. [Epub ahead of print]</p>
dc.identifier.issn1548-7105
dc.identifier.doi10.1038/nmeth.2148
dc.identifier.pmid22941365
dc.identifier.urihttp://hdl.handle.net/20.500.14038/49867
dc.description.abstractExtracting biologically meaningful information from chromosomal interactions obtained with genome-wide chromosome conformation capture (3C) analyses requires the elimination of systematic biases. We present a computational pipeline that integrates a strategy to map sequencing reads with a data-driven method for iterative correction of biases, yielding genome-wide maps of relative contact probabilities. We validate this ICE (iterative correction and eigenvector decomposition) technique on published data obtained by the high-throughput 3C method Hi-C, and we demonstrate that eigenvector decomposition of the obtained maps provides insights into local chromatin states, global patterns of chromosomal interactions, and the conserved organization of human and mouse chromosomes.
dc.language.isoen_US
dc.publisherNature Pub. Group
dc.relation<a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22941365&dopt=Abstract">Link to article in PubMed</a>
dc.relation.urlhttp://dx.doi.org/10.1038/nmeth.2148
dc.subjectChromosome Positioning
dc.subjectChromosomes
dc.subjectDNA
dc.subjectGenomics
dc.subjectNucleic Acid Conformation
dc.subjectGenetics and Genomics
dc.subjectSystems Biology
dc.titleIterative correction of Hi-C data reveals hallmarks of chromosome organization
dc.typeJournal Article
dc.source.journaltitleNature methods
dc.identifier.legacycoverpagehttps://escholarship.umassmed.edu/sysbio_pubs/14
dc.identifier.contextkey3295204
html.description.abstract<p>Extracting biologically meaningful information from chromosomal interactions obtained with genome-wide chromosome conformation capture (3C) analyses requires the elimination of systematic biases. We present a computational pipeline that integrates a strategy to map sequencing reads with a data-driven method for iterative correction of biases, yielding genome-wide maps of relative contact probabilities. We validate this ICE (iterative correction and eigenvector decomposition) technique on published data obtained by the high-throughput 3C method Hi-C, and we demonstrate that eigenvector decomposition of the obtained maps provides insights into local chromatin states, global patterns of chromosomal interactions, and the conserved organization of human and mouse chromosomes.</p>
dc.identifier.submissionpathsysbio_pubs/14
dc.contributor.departmentDepartment of Biochemistry and Molecular Pharmacology
dc.contributor.departmentProgram in Systems Biology


This item appears in the following Collection(s)

Show simple item record