UMass Chan Affiliations
Department of Microbiology and Physiological SystemsProgram in Systems Biology
Document Type
Journal ArticlePublication Date
2016-03-08Keywords
synthetic biologyCell Biology
Genetics and Genomics
Integrative Biology
Molecular Biology
Systems Biology
Metadata
Show full item recordAbstract
The main tenet of physical biology is that biological phenomena can be subject to the same quantitative and predictive understanding that physics has afforded in the context of inanimate matter. However, the inherent complexity of many of these biological processes often leads to the derivation of complex theoretical descriptions containing a plethora of unknown parameters. Such complex descriptions pose a conceptual challenge to the establishment of a solid basis for predictive biology. In this article, we present various exciting examples of how synthetic biology can be used to simplify biological systems and distill these phenomena down to their essential features as a means to enable their theoretical description. Here, synthetic biology goes beyond previous efforts to engineer nature and becomes a tool to bend nature to understand it. We discuss various recent and classic experiments featuring applications of this synthetic approach to the elucidation of problems ranging from bacteriophage infection, to transcriptional regulation in bacteria and in developing embryos, to evolution. In all of these examples, synthetic biology provides the opportunity to turn cells into the equivalent of a test tube, where biological phenomena can be reconstituted and our theoretical understanding put to test with the same ease that these same phenomena can be studied in the in vitro setting.Source
Integr Biol (Camb). 2016 Mar 8. Link to article on publisher's siteDOI
10.1039/c6ib00006aPermanent Link to this Item
http://hdl.handle.net/20.500.14038/49961PubMed ID
26952708Notes
© The Royal Society of Chemistry 2016. Publisher PDF posted after 12 months as allowed by the publisher's author rights policy at http://www.rsc.org/journals-books-databases/journal-authors-reviewers/licences-copyright-permissions/#author-rights.
Related Resources
Link to Article in PubMedae974a485f413a2113503eed53cd6c53
10.1039/c6ib00006a
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stressTentner, Andrea R.; Lee, Michael J; Ostheimer, Gerry J.; Samson, Leona D.; Lauffenburger, Douglas A.; Yaffe, Michael B. (2012-01-31)Following DNA damage, cells display complex multi-pathway signaling dynamics that connect cell-cycle arrest and DNA repair in G1, S, or G2/M phase with phenotypic fate decisions made between survival, cell-cycle re-entry and proliferation, permanent cell-cycle arrest, or cell death. How these phenotypic fate decisions are determined remains poorly understood, but must derive from integrating genotoxic stress signals together with inputs from the local microenvironment. To investigate this in a systematic manner, we undertook a quantitative time-resolved cell signaling and phenotypic response study in U2OS cells receiving doxorubicin-induced DNA damage in the presence or absence of TNFalpha co-treatment; we measured key nodes in a broad set of DNA damage signal transduction pathways along with apoptotic death and cell-cycle regulatory responses. Two relational modeling approaches were then used to identify network-level relationships between signals and cell phenotypic events: a partial least squares regression approach and a complementary new technique which we term 'time-interval stepwise regression.' Taken together, the results from these analysis methods revealed complex, cytokine-modulated inter-relationships among multiple signaling pathways following DNA damage, and identified an unexpected context-dependent role for Erk in both G1/S arrest and apoptotic cell death following treatment with this commonly used clinical chemotherapeutic drug.
-
The genome-wide multi-layered architecture of chromosome pairing in early Drosophila embryosErceg, Jelena; AlHaj Abed, Jumana; Goloborodko, Anton; Lajoie, Bryan R.; Fudenberg, Geoffrey; Abdennur, Nezar; Imakaev, Maxim; McCole, Ruth B.; Nguyen, Son C.; Saylor, Wren; et al. (2019-10-03)Genome organization involves cis and trans chromosomal interactions, both implicated in gene regulation, development, and disease. Here, we focus on trans interactions in Drosophila, where homologous chromosomes are paired in somatic cells from embryogenesis through adulthood. We first address long-standing questions regarding the structure of embryonic homolog pairing and, to this end, develop a haplotype-resolved Hi-C approach to minimize homolog misassignment and thus robustly distinguish trans-homolog from cis contacts. This computational approach, which we call Ohm, reveals pairing to be surprisingly structured genome-wide, with trans-homolog domains, compartments, and interaction peaks, many coinciding with analogous cis features. We also find a significant genome-wide correlation between pairing, transcription during zygotic genome activation, and binding of the pioneer factor Zelda. Our findings reveal a complex, highly structured organization underlying homolog pairing, first discovered a century ago in Drosophila. Finally, we demonstrate the versatility of our haplotype-resolved approach by applying it to mammalian embryos.
-
Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom settingMavor, David; Roscoe, Benjamin P.; Bolon, Daniel N A; Fraser, James S. (2016-04-25)Ubiquitin is essential for eukaryotic life and varies in only 3 amino acid positions between yeast and humans. However, recent deep sequencing studies indicate that ubiquitin is highly tolerant to single mutations. We hypothesized that this tolerance would be reduced by chemically induced physiologic perturbations. To test this hypothesis, a class of first year UCSF graduate students employed deep mutational scanning to determine the fitness landscape of all possible single residue mutations in the presence of five different small molecule perturbations. These perturbations uncover 'shared sensitized positions' localized to areas around the hydrophobic patch and the C-terminus. In addition, we identified perturbation specific effects such as a sensitization of His68 in HU and a tolerance to mutation at Lys63 in DTT. Our data show how chemical stresses can reduce buffering effects in the ubiquitin proteasome system. Finally, this study demonstrates the potential of lab-based interdisciplinary graduate curriculum.