• Login
    View Item 
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Biochemistry and Molecular Biotechnology
    • Thompson Lab Publications
    • View Item
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Biochemistry and Molecular Biotechnology
    • Thompson Lab Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Seeing citrulline: development of a phenylglyoxal-based probe to visualize protein citrullination.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Bicker, Kevin L.
    Subramanian, Venkataraman
    Chumanevich, Alexander A.
    Hofseth, Lorne J.
    Thompson, Paul R
    UMass Chan Affiliations
    Department of Biochemistry and Molecular Pharmacology
    Document Type
    Journal Article
    Publication Date
    2012-10-17
    Keywords
    Animals
    Biological Markers
    Citrulline
    Hydrolases
    Kinetics
    Mice
    Molecular Probes
    Molecular Structure
    Phenylglyoxal
    Rhodamines
    Biochemistry
    Enzymes and Coenzymes
    Medicinal-Pharmaceutical Chemistry
    Therapeutics
    Show allShow less
    
    Metadata
    Show full item record
    Link to Full Text
    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572846/
    Abstract
    Protein arginine deiminases (PADs) catalyze the hydrolysis of peptidyl arginine to form peptidyl citrulline. Abnormally high PAD activity is observed in a host of human diseases, but the exact role of protein citrullination in these diseases and the identities of specific citrullinated disease biomarkers remain unknown, largely because of the lack of readily available chemical probes to detect protein citrullination. For this reason, we developed a citrulline-specific chemical probe, rhodamine-phenylglyoxal (Rh-PG), which we show can be used to investigate protein citrullination. This methodology is superior to existing techniques because it possesses higher throughput and excellent sensitivity. Additionally, we demonstrate that this probe can be used to determine the kinetic parameters for a number of protein substrates, monitor drug efficacy, and identify disease biomarkers in an animal model of ulcerative colitis that displays aberrantly increased PAD activity.
    Source
    J Am Chem Soc. 2012 Oct 17;134(41):17015-8. doi: 10.1021/ja308871v. Epub 2012 Oct 3. Link to article on publisher's site
    DOI
    10.1021/ja308871v
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/50022
    Notes

    At the time of publication, Paul Thompson was not yet affiliated with UMass Medical School.

    Related Resources
    Link to Article in PubMed
    ae974a485f413a2113503eed53cd6c53
    10.1021/ja308871v
    Scopus Count
    Collections
    Thompson Lab Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.