• Login
    View Item 
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Biochemistry and Molecular Biotechnology
    • Thompson Lab Publications
    • View Item
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Biochemistry and Molecular Biotechnology
    • Thompson Lab Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsProfilesView

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Regiospecificity of aminoglycoside phosphotransferase from Enterococci and Staphylococci (APH(3')-IIIa)

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Thompson, Paul R
    Hughes, D. W.
    Wright, G. D.
    UMass Chan Affiliations
    Department of Biochemistry and Molecular Pharmacology
    Document Type
    Journal Article
    Publication Date
    1996-07-02
    Keywords
    Aminoglycosides
    Anti-Bacterial Agents
    Carbohydrate Sequence
    Drug Resistance, Microbial
    Enterococcus
    Kanamycin Kinase
    Magnetic Resonance Spectroscopy
    Molecular Sequence Data
    Phosphorylation
    Phosphotransferases (Alcohol Group Acceptor)
    Spectrometry, Mass, Secondary Ion
    Staphylococcus
    Substrate Specificity
    Biochemistry
    Enzymes and Coenzymes
    Medicinal-Pharmaceutical Chemistry
    Therapeutics
    Show allShow less
    
    Metadata
    Show full item record
    Link to Full Text
    http://dx.doi.org/10.1021/bi960389w
    Abstract
    The broad-spectrum aminoglycoside phosphotransferase, APH(3')-IIIa, confers resistance to several aminoglycoside antibiotics in opportunistic pathogens of the genera Staphylococcus and Enterococcus. The profile of the drug resistance phenotype suggested that the enzyme would transfer a phosphate group from ATP to the 3'-hydroxyl of aminoglycosides. In addition, resistance to the 3'-deoxyaminoglycoside antibiotic, lividomycin A, suggested possible transfer to the 5"-hydroxyl of the ribose [Trieu-Cuot, P., and Courvalin, P. (1983) Gene 23, 331-341]. Using purified overexpressed enzyme, we have prepared and purified the products of APH(3')-IIIa-dependent phosphorylation of several of aminoglycoside antibiotics. Mass spectral analysis revealed that 4,6-disubstituted aminocyclitol antibiotics such as amikacin and kanamycin are monophosphorylated, while 4,5-disubstituted aminoglycosides such as butirosin A, ribostamycin, and neomycin B are both mono- and diphosphorylated by APH(3')-IIIa. Using a series of one- and two-dimensional 1H, 13C, and 31P NMR experiments, we have unambiguously assigned the regiospecificity of phosphoryl transfer to several antibiotics. The 4,6-disubstituted aminocyclitol antibiotics are exclusively phosphorylated at the 3'-OH hydroxyl, and the 4,5-disubstituted aminocyclitol antibiotics can be phosphorylated at both the 3'- and 5"-hydroxyls. The first phosphorylation can occur on either the 3'- or 5"-hydroxyl group of neomycin B or butirosin A. Initial phosphotransfer to the 3'-position predominates for butirosin while the 5"-OH is favored for neomycin. These results open the potential for the rational design of aminoglycoside kinase inhibitors based on functionalization of either the 6-aminohexose or the pentose rings of aminoglycoside antibiotics.
    Source
    Biochemistry. 1996 Jul 2;35(26):8686-95. Link to article on publisher's site
    DOI
    10.1021/bi960389w
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/50094
    Notes

    At the time of publication, Paul Thompson was not yet affiliated with UMass Medical School.

    Related Resources
    Link to Article in PubMed
    ae974a485f413a2113503eed53cd6c53
    10.1021/bi960389w
    Scopus Count
    Collections
    Thompson Lab Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Works found in eScholarship@UMassChan are protected by copyright unless otherwise indicated.
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.