• Login
    View Item 
    •   Home
    • UMass Chan Departments, Programs and Centers
    • UMass Center for Clinical and Translational Science
    • UMass Center for Clinical and Translational Science Supported Publications
    • View Item
    •   Home
    • UMass Chan Departments, Programs and Centers
    • UMass Center for Clinical and Translational Science
    • UMass Center for Clinical and Translational Science Supported Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Bioimpedance-Based Heart Failure Deterioration Prediction Using a Prototype Fluid Accumulation Vest-Mobile Phone Dyad: An Observational Study

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    pdf.pdf
    Size:
    4.542Mb
    Format:
    PDF
    Download
    Authors
    Darling, Chad E.
    Dovancescu, Silviu
    Saczynski, Jane S.
    Riistama, Jarno
    Sert Kuniyoshi, Fatima
    Rock, Joseph
    Meyer, Theo E.
    McManus, David D.
    UMass Chan Affiliations
    Department of Medicine, Division of Cardiovascular Medicine
    Department of Emergency Medicine
    Document Type
    Journal Article
    Publication Date
    2017-03-13
    Keywords
    Electric impedance
    heart failure
    outpatient monitoring
    telemedicine
    UMCCTS funding
    Cardiology
    Cardiovascular Diseases
    Telemedicine
    Translational Medical Research
    
    Metadata
    Show full item record
    Abstract
    BACKGROUND: Recurrent heart failure (HF) events are common in patients discharged after acute decompensated heart failure (ADHF). New patient-centered technologies are needed to aid in detecting HF decompensation. Transthoracic bioimpedance noninvasively measures pulmonary fluid retention. OBJECTIVE: The objectives of our study were to (1) determine whether transthoracic bioimpedance can be measured daily with a novel, noninvasive, wearable fluid accumulation vest (FAV) and transmitted using a mobile phone and (2) establish whether an automated algorithm analyzing daily thoracic bioimpedance values would predict recurrent HF events. METHODS: We prospectively enrolled patients admitted for ADHF. Participants were trained to use a FAV-mobile phone dyad and asked to transmit bioimpedance measurements for 45 consecutive days. We examined the performance of an algorithm analyzing changes in transthoracic bioimpedance as a predictor of HF events (HF readmission, diuretic uptitration) over a 75-day follow-up. RESULTS: We observed 64 HF events (18 HF readmissions and 46 diuretic uptitrations) in the 106 participants (67 years; 63.2%, 67/106, male; 48.1%, 51/106, with prior HF) who completed follow-up. History of HF was the only clinical or laboratory factor related to recurrent HF events (P=.04). Among study participants with sufficient FAV data (n=57), an algorithm analyzing thoracic bioimpedance showed 87% sensitivity (95% CI 82-92), 70% specificity (95% CI 68-72), and 72% accuracy (95% CI 70-74) for identifying recurrent HF events. CONCLUSIONS: Patients discharged after ADHF can measure and transmit daily transthoracic bioimpedance using a FAV-mobile phone dyad. Algorithms analyzing thoracic bioimpedance may help identify patients at risk for recurrent HF events after hospital discharge. Sert Kuniyoshi, Joseph Rock, Theo E Meyer, David D McManus. Originally published in JMIR Cardio (http://cardio.jmir.org), 13.03.2017.
    Source

    Darling CE, Dovancescu S, Saczynski JS, Riistama J, Sert Kuniyoshi F, Rock J, Meyer TE, McManus DD. Bioimpedance-Based Heart Failure Deterioration Prediction Using a Prototype Fluid Accumulation Vest-Mobile Phone Dyad: An Observational Study. JMIR Cardio. 2017 Mar 13;1(1):e1. doi: 10.2196/cardio.6057. PMID: 31758769; PMCID: PMC6832026. Link to article on publisher's site

    DOI
    10.2196/cardio.6057
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/50396
    PubMed ID
    31758769
    Related Resources

    Link to Article in PubMed

    Rights
    Copyright © Chad Eric Darling, Silviu Dovancescu, Jane S Saczynski, Jarno Riistama, Fatima Sert Kuniyoshi, Joseph Rock, Theo E Meyer, David D McManus. Originally published in JMIR Cardio (http://cardio.jmir.org), 13.03.2017. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Cardio, is properly cited. The complete bibliographic information, a link to the original publication on http://cardio.jmir.org, as well as this copyright and license information must be included.
    ae974a485f413a2113503eed53cd6c53
    10.2196/cardio.6057
    Scopus Count
    Collections
    UMass Center for Clinical and Translational Science Supported Publications
    Emergency Medicine Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.