Clinical Characterization and Prediction of Clinical Severity of SARS-CoV-2 Infection Among US Adults Using Data From the US National COVID Cohort Collaborative
dc.contributor.author | Bennett, Tellen D. | |
dc.contributor.author | Chute, Christopher G. | |
dc.contributor.author | Vangala, Uma Maheswara Reddy | |
dc.contributor.author | Luzuriaga, Katherine | |
dc.contributor.author | National COVID Cohort Collaborative (N3C) Consortium | |
dc.date | 2022-08-11T08:11:02.000 | |
dc.date.accessioned | 2022-08-23T17:29:53Z | |
dc.date.available | 2022-08-23T17:29:53Z | |
dc.date.issued | 2021-07-01 | |
dc.date.submitted | 2021-07-27 | |
dc.identifier.citation | <p>Bennett TD, Moffitt RA, Hajagos JG, Amor B, Anand A, Bissell MM, Bradwell KR, Bremer C, Byrd JB, Denham A, DeWitt PE, Gabriel D, Garibaldi BT, Girvin AT, Guinney J, Hill EL, Hong SS, Jimenez H, Kavuluru R, Kostka K, Lehmann HP, Levitt E, Mallipattu SK, Manna A, McMurry JA, Morris M, Muschelli J, Neumann AJ, Palchuk MB, Pfaff ER, Qian Z, Qureshi N, Russell S, Spratt H, Walden A, Williams AE, Wooldridge JT, Yoo YJ, Zhang XT, Zhu RL, Austin CP, Saltz JH, Gersing KR, Haendel MA, Chute CG; National COVID Cohort Collaborative (N3C) Consortium. Clinical Characterization and Prediction of Clinical Severity of SARS-CoV-2 Infection Among US Adults Using Data From the US National COVID Cohort Collaborative. JAMA Netw Open. 2021 Jul 1;4(7):e2116901. doi: 10.1001/jamanetworkopen.2021.16901. PMID: 34255046; PMCID: PMC8278272. <a href="https://doi.org/10.1001/jamanetworkopen.2021.16901">Link to article on publisher's site</a></p> | |
dc.identifier.issn | 2574-3805 (Linking) | |
dc.identifier.doi | 10.1001/jamanetworkopen.2021.16901 | |
dc.identifier.pmid | 34255046 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14038/50421 | |
dc.description.abstract | Importance: The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy. Objectives: To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. Design, Setting, and Participants: In a retrospective cohort study of 1926526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen < 1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). Main Outcomes and Measures: Patient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. Results: The cohort included 174568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1133848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174568 adults with SARS-CoV-2, 32472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95% CI, 1.03-1.04), male sex (OR, 1.60; 95% CI, 1.51-1.69), liver disease (OR, 1.20; 95% CI, 1.08-1.34), dementia (OR, 1.26; 95% CI, 1.13-1.41), African American (OR, 1.12; 95% CI, 1.05-1.20) and Asian (OR, 1.33; 95% CI, 1.12-1.57) race, and obesity (OR, 1.36; 95% CI, 1.27-1.46) were independently associated with higher clinical severity. Conclusions and Relevance: This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission. | |
dc.language.iso | en_US | |
dc.relation | <p><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&list_uids=34255046&dopt=Abstract">Link to Article in PubMed</a></p> | |
dc.rights | Copyright 2021 Bennett TD et al. JAMA Network Open. This is an open access article distributed under the terms of the CC-BY License. | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | UMCCTS funding | |
dc.subject | SARS-CoV-2 infection | |
dc.subject | COVID | |
dc.subject | risk factors | |
dc.subject | severity | |
dc.subject | machine learning models | |
dc.subject | predictions | |
dc.subject | Artificial Intelligence and Robotics | |
dc.subject | Data Science | |
dc.subject | Disease Modeling | |
dc.subject | Epidemiology | |
dc.subject | Health Information Technology | |
dc.subject | Translational Medical Research | |
dc.subject | Virus Diseases | |
dc.title | Clinical Characterization and Prediction of Clinical Severity of SARS-CoV-2 Infection Among US Adults Using Data From the US National COVID Cohort Collaborative | |
dc.type | Journal Article | |
dc.source.journaltitle | JAMA network open | |
dc.source.volume | 4 | |
dc.source.issue | 7 | |
dc.identifier.legacyfulltext | https://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=1254&context=umccts_pubs&unstamped=1 | |
dc.identifier.legacycoverpage | https://escholarship.umassmed.edu/umccts_pubs/244 | |
dc.identifier.contextkey | 24045754 | |
refterms.dateFOA | 2022-08-23T17:29:54Z | |
html.description.abstract | <p>Importance: The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy.</p> <p>Objectives: To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity.</p> <p>Design, Setting, and Participants: In a retrospective cohort study of 1926526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen < 1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation).</p> <p>Main Outcomes and Measures: Patient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression.</p> <p>Results: The cohort included 174568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1133848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174568 adults with SARS-CoV-2, 32472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95% CI, 1.03-1.04), male sex (OR, 1.60; 95% CI, 1.51-1.69), liver disease (OR, 1.20; 95% CI, 1.08-1.34), dementia (OR, 1.26; 95% CI, 1.13-1.41), African American (OR, 1.12; 95% CI, 1.05-1.20) and Asian (OR, 1.33; 95% CI, 1.12-1.57) race, and obesity (OR, 1.36; 95% CI, 1.27-1.46) were independently associated with higher clinical severity.</p> <p>Conclusions and Relevance: This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission.</p> | |
dc.identifier.submissionpath | umccts_pubs/244 | |
dc.contributor.department | UMass Center for Clinical and Translational Science | |
dc.source.pages | e2116901 |