Analysis of transforming growth factor-beta1-induced Ig germ-line gamma2b transcription and its implication for IgA isotype switching
UMass Chan Affiliations
Department of Molecular Genetics and MicrobiologyDocument Type
Journal ArticlePublication Date
2005-03-01Keywords
AnimalsBase Sequence
Core Binding Factor Alpha 3 Subunit
DNA-Binding Proteins
E1A-Associated p300 Protein
Electrophoretic Mobility Shift Assay
Immunoglobulin A
Immunoglobulin Class Switching
Immunoglobulin G
Mice
Mice, Inbred BALB C
Molecular Sequence Data
Nuclear Proteins
Promoter Regions (Genetics)
Reverse Transcriptase Polymerase Chain Reaction
Smad3 Protein
Smad4 Protein
Trans-Activators
Transcription Factors
*Transcription, Genetic
Transfection
Transforming Growth Factor beta
Life Sciences
Medicine and Health Sciences
Women's Studies
Metadata
Show full item recordAbstract
Transforming growth factor (TGF)-beta1 directs class switch recombination (CSR) to IgG2b as well as to IgA. Smad3/4, Runx3 and p300 mediate TGF-beta1-induced germ-line (GL) alpha transcription leading to IgA expression. However, the molecular mechanisms by which TGF-beta1 induces IgG2b CSR are unknown. We used luciferase reporter plasmids to investigate how TGF-beta1 regulates the activity of the promoter for GL transcripts of IgG2b constant gene (GLgamma2b promoter). Similarly to the GLalpha promoter, overexpression of Smad3/4 and Runx3 enhances TGF-beta1-induced GLgamma2b promoter activity. Mutation analysis of the promoter identified likely Smad- and Runx3-binding sites. Also similar to the GLalpha promoter, overexpression of p300 enhances Smad3/4-mediated promoter activity, whereas E1A represses promoter activity. Since these regulation mechanisms underlying both GLalpha and GLgamma2b transcription are similar, we explored the possibility that TGF-beta1 induces IgA CSR via transitional IgG2b CSR. TGF-beta1 enhances the expression of both Ialpha-Cmu and Ialpha-Cgamma2b circle transcripts, indicative of direct (Smu-->Salpha) and sequential CSR (Smu-->Sgamma2b-->Salpha).Source
Eur J Immunol. 2005 Mar;35(3):946-56. Link to article on publisher's siteDOI
10.1002/eji.200425848Permanent Link to this Item
http://hdl.handle.net/20.500.14038/50649PubMed ID
15688346Related Resources
Link to article in PubMedae974a485f413a2113503eed53cd6c53
10.1002/eji.200425848
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.