Smooth muscle archvillin: a novel regulator of signaling and contractility in vascular smooth muscle
Authors
Gangopadhyay, Samudra S.Takizawa, Norio
Gallant, Cynthia
Barber, Amy L.
Je, Hyun-Dong
Smith, Tara C.
Luna, Elizabeth J.
Morgan, Kathleen G.
UMass Chan Affiliations
Department of Cell BiologyDocument Type
Journal ArticlePublication Date
2004-09-24Keywords
Alternative SplicingAmino Acid Sequence
Animals
Aorta
Blotting, Western
COS Cells
Calcium-Binding Proteins
DNA, Complementary
Enzyme Activation
Ferrets
Glutathione Transferase
Membrane Proteins
Microfilament Proteins
Microscopy, Fluorescence
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3
Models, Genetic
Molecular Sequence Data
Muscle, Smooth
Oligonucleotides, Antisense
Phosphorylation
Protein Binding
Protein Kinase C
Protein Structure, Tertiary
Recombinant Proteins
Reverse Transcriptase Polymerase Chain Reaction
Sequence Homology, Amino Acid
Signal Transduction
Subcellular Fractions
Time Factors
Transfection
Two-Hybrid System Techniques
Cell Biology
Life Sciences
Medicine and Health Sciences
Metadata
Show full item recordAbstract
The mechanisms by which protein kinase C (PKC) and extracellular-signal-regulated kinases (ERK1/2) govern smooth-muscle contractility remain unclear. Calponin (CaP), an actin-binding protein and PKC substrate, mediates signaling through ERK1/2. We report here that CaP sequences containing the CaP homology (CH) domain bind to the C-terminal 251 amino acids of smooth-muscle archvillin (SmAV), a new splice variant of supervillin, which is a known actin- and myosin-II-binding protein. The CaP-SmAV interaction is demonstrated by reciprocal yeast two-hybrid and blot-overlay assays and by colocalization in COS-7 cells. In differentiated smooth muscle, endogenous SmAV and CaP co-fractionate and co-translocate to the cell cortex after stimulation by agonist. Antisense knockdown of SmAV in tissue inhibits both the activation of ERK1/2 and contractions stimulated by either agonist or PKC activation. This ERK1/2 signaling and contractile defect is similar to that observed in CaP knockdown experiments. In A7r5 smooth-muscle cells, PKC activation by phorbol esters induces the reorganization of endogenous, membrane-localized SmAV and microfilament-associated CaP into podosome-like structures that also contain F-actin, nonmuscle myosin IIB and ERK1/2. These results indicate that SmAV contributes to the regulation of contractility through a CaP-mediated signaling pathway, involving PKC activation and phosphorylation of ERK1/2.Source
J Cell Sci. 2004 Oct 1;117(Pt 21):5043-57. Epub 2004 Sep 21. Link to article on publisher's siteDOI
10.1242/jcs.01378Permanent Link to this Item
http://hdl.handle.net/20.500.14038/50784PubMed ID
15383618Related Resources
Link to article in PubMedae974a485f413a2113503eed53cd6c53
10.1242/jcs.01378
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Dynamic Regulation at the Neuronal Plasma Membrane: Novel Endocytic Mechanisms Control Anesthetic-Activated Potassium Channels and Amphetamine-Sensitive Dopamine Transporters: A DissertationGabriel, Luke R. (2013-06-13)Endocytic trafficking dynamically regulates neuronal plasma membrane protein presentation and activity, and plays a central role in excitability and plasticity. Over the course of my dissertation research I investigated endocytic mechanisms regulating two neuronal membrane proteins: the anesthetic-activated potassium leak channel, KCNK3, as well as the psychostimulant-sensitive dopamine transporter (DAT). My results indicate that KCNK3 internalizes in response to Protein Kinase C (PKC) activation, using a novel pathway that requires the phosphoserine binding protein, 14-3-3β, and demonstrates for the first time regulated KCNK3 channel trafficking in neurons. Additionally, PKC-mediated KCNK3 trafficking requires a non-canonical endocytic motif, which is shared exclusively between KCNK3 and sodium-dependent neurotransmitter transporters, such as DAT. DAT trafficking studies in intact ex vivo adult striatal slices indicate that DAT endocytic trafficking has both dynamin-dependent and –independent components. Moreover, DAT segregates into two populations at the neuronal plasma membrane: trafficking-competent and -incompetent. Taken together, these results demonstrate that novel, non-classical endocytic mechanisms dynamically control the plasma membrane presentation of these two important neuronal proteins.
-
Selective interaction of JNK protein kinase isoforms with transcription factorsGupta, Shashi; Barrett, Tamera; Whitmarsh, Alan J.; Cavanagh, Julie; Sluss, Hayla Karen; Derijard, Benoit; Davis, Roger J. (1996-06-03)The JNK protein kinase is a member of the MAP kinase group that is activated in response to dual phosphorylation on threonine and tyrosine. Ten JNK isoforms were identified in human brain by molecular cloning. These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes. The protein kinase activity of these JNK isoforms was measured using the transcription factors ATF2, Elk-1 and members of the Jun family as substrates. Treatment of cells with interleukin-1 (IL-1) caused activation of the JNK isoforms. This activation was blocked by expression of the MAP kinase phosphatase MKP-1. Comparison of the binding activity of the JNK isoforms demonstrated that the JNK proteins differ in their interaction with ATF2, Elk-1 and Jun transcription factors. Individual members of the JNK group may therefore selectively target specific transcription factors in vivo.
-
Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitizationKlarlund, Jes K.; Cherniack, Andrew D.; McMahon, Martin; Czech, Michael P. (1996-07-12)Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).