ABOUT THIS COLLECTION

Founded in 2001, the Department of Neurobiology at UMass Chan Medical School has evolved into a unique and integrated hub of investigators addressing fundamental problems in neurobiology, from single molecules to behavior, primarily using invertebrate model organisms. Combining cell biological, physiological and behavioral analyses with a critical interventionist angle afforded by cutting-edge genetic approaches, the Department aims to understand the complexity of brain development and function. This collection showcases journal articles and other publications co-authored by Neurobiology students.

QUESTIONS?

Contact escholarship@umassmed.edu with your questions.

Recently Published

  • Investigating Proteolytic Processing of Ataxin 2, a Neurodegenerative Disease Associated Protein

    Patrick Emery; Chitre, Monika (UMass Chan Medical School, 2022-08-08)
    Ataxin 2 (ATXN2) is a ubiquitously expressed mRNA binding protein involved in the development and progression of spinocerebellar ataxia 2 (SCA2) and amyotrophic lateral sclerosis (ALS). In the context of both neurodegenerative diseases, its N-terminal polyglutamine (polyQ) domain is mutated and expanded in length. Several other polyQ proteins, such as huntingtin (Htt), ataxin 3 (ATXN3), and ataxin 7 (ATXN7), undergo proteolytic processing that produces toxic fragments containing their polyQ domains. Investigating how ATXN2 is regulated by proteolysis is hindered by the lack of available molecular biological tools such as N-terminal ATXN2 antibodies to target and analyze the endogenous N-terminus of ATXN2. To circumvent this challenge, I developed a transient overexpression model of N-terminally tagged ATXN2 in HEK293E cells. Here, I demonstrate that both wild-type and mutant ATXN2 are targets of N-terminal proteolysis. I confirmed that ATXN2 produces an independent polyQ cleavage fragment like other polyQ proteins through basic molecular biology approaches such as Western blotting and immunoprecipitation. Additionally, I identified the specific region that is both necessary and sufficient for cleavage to occur via deletion mapping with multiple truncated ATXN2 mutants and reporter constructs. Further definition of ATXN2 as a target of proteolytic cleavage aligns it with other neurodegenerative polyQ proteins, and proteolysis is currently a less explored avenue of research for ATXN2-related disease development, progression, and therapeutic modalities. This work reveals a novel site that directs cleavage of ATXN2 and provides a potential avenue of investigation for how ATXN2 posttranslational modifications contribute to the progression of SCA2 and ALS.
  • Gliotransmission Orchestrates Neuronal Type-specific Axon Regeneration

    Yang Xiang; Wang, Fei (UMass Chan Medical School, 2022-06-30)
    Why closely related neuronal types differ in their axon regenerative abilities remains elusive. Here, I demonstrate gliotransmission determines such a difference in Drosophila larval sensory neurons. Axotomy activates ensheathing glia, which signal to regenerative neurons through the gliotransmitter adenosine, to mount regenerative programs including neuronal activity and Ras. Surprisingly, ensheathing glia do not signal to non-regenerative neurons. Such neuronal type-specific responses to gliotransmission result from specific expression of adenosine receptors in regenerative neurons. Disrupting gliotransmission impedes regeneration of regenerative neurons. Strikingly, reconstitution of gliotransmission in non-regenerative neurons enables them to regenerate. Furthermore, activation of an adenosine receptor in adult mice promotes both regeneration and survival of retinal ganglion cells, uncovering a conserved pro-regenerative role of adenosine receptors. My studies demonstrate gliotransmission as a novel mechanism by which glia instruct axon regeneration, with neuronal type-specificity, and suggest targeting purinergic signaling as a new strategy for mammalian central nervous system repair.
  • Binge Alcohol Drinking Alters the Differential Control of Cholinergic Interneurons over Nucleus Accumbens Medium Spiny Neurons

    Gilles Martin; Kolpakova, Jenya (UMass Chan Medical School, 2022-05-06)
    Striatal cholinergic interneurons (ChIs) play a central role in basal ganglia function by regulating associative learning and reward processing. Drug addiction, such as alcoholism, is often described to hijack the natural reward system. In the nucleus accumbens (NAc), a brain region that mediates rewarding properties of substance of abuse, ChIs regulate glutamatergic, dopaminergic, and GABAergic neurotransmission. However, it is unclear how ChIs orchestrate the control of these neurotransmitters to determine the excitability of medium spiny neurons (MSNs), the NAc output neurons that translate accumbens electrical activity into behavior. Combining ex vivo electrophysiology, fast scan cyclic voltammetry and optogenetics approaches, I have demonstrated that stimulating NAc ChIs decreases the spontaneous excitatory postsynaptic currents (sEPSCs) frequency of both D1- and D2-MSNs through different mechanisms. While this effect in D1-MSNs was mediated by dopamine, it resulted from a direct control of glutamate release by ChIs in D2-MSNs. Interestingly, after two weeks of binge alcohol drinking, the effect of ChI stimulation on glutamate release was reversed in D1-MSNs, while its effect on D2-MSNs remained unchanged. Finally, in vivo optogenetic stimulation of NAc ChIs significantly increased alcohol consumption compared to unstimulated mice, but failed to alter mouse locomotor activity and saccharine or water consumption. Together, these results identify ChIs as a key modulator of NAc circuit activity and as a potential therapeutic target for alcohol use disorder.
  • Co-transmission of neuropeptides and monoamines choreograph the C. elegans escape response

    Florman, Jeremy T.; Alkema, Mark J. (2022-03-03)
    Co-localization and co-transmission of neurotransmitters and neuropeptides is a core property of neural signaling across species. While co-transmission can increase the flexibility of cellular communication, understanding the functional impact on neural dynamics and behavior remains a major challenge. Here we examine the role of neuropeptide/monoamine co-transmission in the orchestration of the C. elegans escape response. The tyraminergic RIM neurons, which coordinate distinct motor programs of the escape response, also co-express the neuropeptide encoding gene flp-18. We find that in response to a mechanical stimulus, flp-18 mutants have defects in locomotory arousal and head bending that facilitate the omega turn. We show that the induction of the escape response leads to the release of FLP-18 neuropeptides. FLP-18 modulates the escape response through the activation of the G-protein coupled receptor NPR-5. FLP-18 increases intracellular calcium levels in neck and body wall muscles to promote body bending. Our results show that FLP-18 and tyramine act in different tissues in both a complementary and antagonistic manner to control distinct motor programs during different phases of the C. elegans flight response. Our study reveals basic principles by which co-transmission of monoamines and neuropeptides orchestrate in arousal and behavior in response to stress.
  • Cell-Type-Specific Circadian Bioluminescence Rhythms in Dbp Reporter Mice

    Smith, Ciearra B.; van der Vinne, Vincent; McCartney, Eleanor; Stowie, Adam C.; Leise, Tanya L.; Martin-Burgos, Blanca; Molyneux, Penny C.; Garbutt, Lauren A.; Brodsky, Michael H.; Davidson, Alec J.; et al. (Sage Publishers, 2022-02-01)
    Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein (Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;DbpKI/+ "liver reporter" mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.
  • A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior

    Ramachandran, Shankar; Banerjee, Navonil; Bhattacharya, Raja; Lemons, Michele L.; Florman, Jeremy; Lambert, Christopher M.; Touroutine, Denis; Alexander, Kellianne; Schoofs, Liliane; Alkema, Mark J.; et al. (2021-11-12)
    Neuromodulators promote adaptive behaviors that are often complex and involve concerted activity changes across circuits that are often not physically connected. It is not well understood how neuromodulatory systems accomplish these tasks. Here, we show that the Caenorhabditis elegans NLP-12 neuropeptide system shapes responses to food availability by modulating the activity of head and body wall motor neurons through alternate G-protein coupled receptor (GPCR) targets, CKR-1 and CKR-2. We show ckr-2 deletion reduces body bend depth during movement under basal conditions. We demonstrate CKR-1 is a functional NLP-12 receptor and define its expression in the nervous system. In contrast to basal locomotion, biased CKR-1 GPCR stimulation of head motor neurons promotes turning during local searching. Deletion of ckr-1 reduces head neuron activity and diminishes turning while specific ckr-1 overexpression or head neuron activation promote turning. Thus, our studies suggest locomotor responses to changing food availability are regulated through conditional NLP-12 stimulation of head or body wall motor circuits.
  • A phase transition enhances the catalytic activity of SARM1, an NAD(+) glycohydrolase involved in neurodegeneration

    Loring, Heather S.; Czech, Victoria L.; Icso, Janneke D.; O'Connor, Lauren C.; Parelkar, Sangram; Byrne, Alexandra B.; Thompson, Paul R. (2021-06-29)
    Sterile alpha and toll/interleukin receptor (TIR) motif-containing protein 1 (SARM1) is a neuronally expressed NAD(+) glycohydrolase whose activity is increased in response to stress. NAD(+) depletion triggers axonal degeneration, which is a characteristic feature of neurological diseases. Notably, loss of SARM1 is protective in murine models of peripheral neuropathy and traumatic brain injury. Herein, we report that citrate induces a phase transition that enhances SARM1 activity by ~2000-fold. This phase transition can be disrupted by mutating a residue involved in multimerization, G601P. This mutation also disrupts puncta formation in cells. We further show that citrate induces axonal degeneration in C. elegans that is dependent on the C. elegans orthologue of SARM1 (TIR-1). Notably, citrate induces the formation of larger puncta indicating that TIR-1/SARM1 multimerization is essential for degeneration in vivo. These findings provide critical insights into SARM1 biology with important implications for the discovery of novel SARM1-targeted therapeutics.
  • Flexible motor sequence generation during stereotyped escape responses

    Wang, Yuan; Zhang, Xiaoqian; Xin, Qi; Hung, Wesley; Florman, Jeremy; Huo, Jing; Xu, Tianqi; Xie, Yu; Alkema, Mark J.; Zhen, Mei; et al. (2020-06-05)
    Complex animal behaviors arise from a flexible combination of stereotyped motor primitives. Here we use the escape responses of the nematode Caenorhabditis elegans to study how a nervous system dynamically explores the action space. The initiation of the escape responses is predictable: the animal moves away from a potential threat, a mechanical or thermal stimulus. But the motor sequence and the timing that follow are variable. We report that a feedforward excitation between neurons encoding distinct motor states underlies robust motor sequence generation, while mutual inhibition between these neurons controls the flexibility of timing in a motor sequence. Electrical synapses contribute to feedforward coupling whereas glutamatergic synapses contribute to inhibition. We conclude that C. elegans generates robust and flexible motor sequences by combining an excitatory coupling and a winner-take-all operation via mutual inhibition between motor modules.
  • A highly efficient method for single-cell electroporation in mouse organotypic hippocampal slice culture

    Keener, David G.; Cheung, Amy; Futai, Kensuke (2020-05-01)
    BACKGROUND: Exogenous gene introduction by transfection is one of the most important approaches for understanding the function of specific genes at the cellular level. Electroporation has a long-standing history as a versatile gene delivery technique in vitro and in vivo. However, it has been underutilized in vitro because of technical difficulty and insufficient transfection efficiency. NEW METHOD: We have developed an electroporation technique that combines the use of large glass electrodes, tetrodotoxin-containing artificial cerebrospinal fluid and mild electrical pulses. Here, we describe the technique and compare it with existing methods. RESULTS: Our method achieves a high transfection efficiency ( approximately 80 %) in both excitatory and inhibitory neurons with no detectable side effects on their function. We demonstrate this method is capable of transferring at least three different genes into a single neuron. In addition, we demonstrate the ability to transfect different genes into neighboring cells. COMPARISON WITH EXISTING METHODS: The majority of existing methods use fine-tipped glass electrodes (i.e. > 10MOmega) and apply high voltage (10V) pulses with high frequency (100Hz) for 1s. These parameters contribute to practical difficulties thus lowering the transfection efficiency. Our unique method minimizes electrode clogging and therefore procedure duration, increasing transfection efficiency and cellular viability. CONCLUSIONS: Our modifications, relative to current methods, optimize electroporation efficiency and cell survival. Our approach offers distinct research strategies not only in elucidating cell-autonomous functions of genes but also for assessing genes contributing to intercellular functions, such as trans-synaptic interactions.
  • In Situ Regulated Dopamine Transporter Trafficking: There's No Place Like Home

    Fagan, Rita R.; Kearney, Patrick J.; Melikian, Haley E. (2020-03-07)
    Dopamine (DA) is critical for motivation, reward, movement initiation, and learning. Mechanisms that control DA signaling have a profound impact on these important behaviors, and additionally play a role in DA-related neuropathologies. The presynaptic SLC6 DA transporter (DAT) limits extracellular DA levels by clearing released DA, and is potently inhibited by addictive and therapeutic psychostimulants. Decades of evidence support that the DAT is subject to acute regulation by a number of signaling pathways, and that endocytic trafficking strongly regulates DAT availability and function. DAT trafficking studies have been performed in a variety of model systems, including both in vitro and ex vivo preparations. In this review, we focus on the breadth of DAT trafficking studies, with specific attention to, and comparison of, how context may influence DAT's response to different stimuli. In particular, this overview highlights that stimulated DAT trafficking not only differs between in vitro and ex vivo environments, but also is influenced by both sex and anatomical subregions.
  • Drosophila Cryptochrome: Variations in Blue

    Foley, Lauren E.; Emery, Patrick (2020-02-01)
    CRYPTOCHROMES (CRYs) are structurally related to ultraviolet (UV)/blue-sensitive DNA repair enzymes called photolyases but lack the ability to repair pyrimidine dimers generated by UV exposure. First identified in plants, CRYs have proven to be involved in light detection and various light-dependent processes in a broad range of organisms. In Drosophila, CRY's best understood role is the cell-autonomous synchronization of circadian clocks. However, CRY also contributes to the amplitude of circadian oscillations in a light-independent manner, controls arousal and UV avoidance, influences visual photoreception, and plays a key role in magnetic field detection. Here, we review our current understanding of the mechanisms underlying CRY's various circadian and noncircadian functions in fruit flies.
  • Polymodal Nociception in Drosophila Requires Alternative Splicing of TrpA1

    Gu, Pengyu; Gong, Jiaxin; Shang, Ye; Wang, Fei; Takle, Kendra; Ma, Zhiguo; Sheehan, Amy E.; Freeman, Marc R.; Xiang, Yang (2019-12-02)
    Transcripts of noxious stimulus-detecting TrpA1 channels are alternatively spliced. Despite the importance of nociception for survival, the in vivo significance of expressing different TrpA1 isoforms is largely unknown. Here, we develop a novel genetic approach to generate Drosophila knockin strains expressing single TrpA1 isoforms. Drosophila TrpA1 mediates heat and UVC-triggered nociception. We show that TrpA1-C and TrpA1-D, two alternative isoforms, are co-expressed in nociceptors. When examined in heterologous cells, both TrpA1-C and TrpA1-D are activated by heat and UVC. By contrast, analysis of knockin flies reveals the striking functional specificity; TrpA1-C mediates UVC-nociception, whereas TrpA1-D mediates heat-nociception. Therefore, in vivo functions of TrpA1-C and TrpA1-D are different from each other and are different from their in vitro properties. Our results indicate that a given sensory stimulus preferentially activates a single TrpA1 isoform in vivo and that polymodal nociception requires co-expression of TrpA1 isoforms, providing novel insights of how alternative splicing regulates nociception.
  • The flight response impairs cytoprotective mechanisms by activating the insulin pathway

    De Rosa, Maria Jose; Veuthey, Tania; Florman, Jeremy; Grant, Jeff; Blanco, Maria Gabriela; Andersen, Natalia; Donnelly, Jamie L.; Rayes, Diego; Alkema, Mark J. (2019-08-28)
    An animal's stress response requires different adaptive strategies depending on the nature and duration of the stressor. Whereas acute stressors, such as predation, induce a rapid and energy-demanding fight-or-flight response, long-term environmental stressors induce the gradual and long-lasting activation of highly conserved cytoprotective processes(1-3). In animals across the evolutionary spectrum, continued activation of the fight-or-flight response weakens the animal's resistance to environmental challenges(4,5). However, the molecular and cellular mechanisms that regulate the trade-off between the flight response and long-term stressors are poorly understood. Here we show that repeated induction of the flight response in Caenorhabditis elegans shortens lifespan and inhibits conserved cytoprotective mechanisms. The flight response activates neurons that release tyramine, an invertebrate analogue of adrenaline and noradrenaline. Tyramine stimulates the insulin-IGF-1 signalling (IIS) pathway and precludes the induction of stress response genes by activating an adrenergic-like receptor in the intestine. By contrast, long-term environmental stressors, such as heat or oxidative stress, reduce tyramine release and thereby allow the induction of cytoprotective genes. These findings demonstrate that a neural stress hormone supplies a state-dependent neural switch between acute flight and long-term environmental stress responses and provides mechanistic insights into how the flight response impairs cellular defence systems and accelerates ageing.
  • Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control

    Erickson, Evelyn T. M.; Ferrari, Loris L.; Gompf, Heinrich S.; Anaclet, Christelle (2019-07-30)
    Parafacial zone (PZ) GABAergic neurons play a major role in slow-wave-sleep (SWS), also called non-rapid eye movement (NREM) sleep. The PZ also contains glutamatergic neurons expressing the vesicular transporter for glutamate, isoform 2 (Vglut2). We hypothesized that PZ Vglut2-expressing (PZ(Vglut2)) neurons are also involved in sleep control, playing a synergistic role with PZ GABAergic neurons. To test this hypothesis, we specifically activated PZ(Vglut2) neurons using the excitatory chemogenetic receptor hM3Dq. Anatomical inspection of the injection sites revealed hM3Dq transfection in PZ, parabrachial nucleus (PB), sublaterodorsal nucleus (SLD) or various combinations of these three brain areas. Consistent with the known wake- and REM sleep-promoting role of PB and SLD, respectively, chemogenetic activation of PB(Vglut2) or SLD(Vglut2) resulted in wake or REM sleep enhancement. Chemogenetic activation of PZ(Vglut2) neurons did not affect sleep-wake phenotype during the mouse active period but increased wakefulness and REM sleep, similar to PB(Vglut2) and SLD(Vglut2) activation, during the rest period. To definitively confirm the role of PZ(Vglut2) neurons, we used a specific marker for PZ(Vglut2) neurons, Phox2B. Chemogenetic activation of PZ(Phox2B) neurons did not affect sleep-wake phenotype, indicating that PZ glutamatergic neurons are not sufficient to affect sleep-wake cycle. These results indicate that PZ glutamatergic neurons are not involved in sleep-wake control.
  • Conditional, inducible gene silencing in dopamine neurons reveals a sex-specific role for Rit2 GTPase in acute cocaine response and striatal function

    Sweeney, Carolyn G.; Kearney, Patrick J.; Fagan, Rita R.; Smith, Lindsey A.; Bolden, Nicholas C.; Zhao-Shea, Rubing; Rivera, Iris V.; Kolpakova, Jenya; Xie, Jun; Gao, Guangping; et al. (2019-07-05)
    Dopamine (DA) signaling is critical for movement, motivation, and addictive behavior. The neuronal GTPase, Rit2, is enriched in DA neurons (DANs), binds directly to the DA transporter (DAT), and is implicated in several DA-related neuropsychiatric disorders. However, it remains unknown whether Rit2 plays a role in either DAergic signaling and/or DA-dependent behaviors. Here we leveraged the TET-OFF system to conditionally silence Rit2 in Pitx3(IRES2-tTA) mouse DANs. Following DAergic Rit2 knockdown (Rit2-KD), mice displayed an anxiolytic phenotype, with no change in baseline locomotion. Further, males exhibited increased acute cocaine sensitivity, whereas DAergic Rit2-KD suppressed acute cocaine sensitivity in females. DAergic Rit2-KD did not affect presynaptic TH and DAT protein levels in females, nor was TH was affected in males; however, DAT was significantly diminished in males. Paradoxically, despite decreased DAT levels in males, striatal DA uptake was enhanced, but was not due to enhanced DAT surface expression in either dorsal or ventral striatum. Finally, patch recordings in nucleus accumbens (NAcc) medium spiny neurons (MSNs) revealed reciprocal changes in spontaneous EPSP (sEPSP) frequency in male and female D1+ and D2+ MSNs following DAergic Rit2-KD. In males, sEPSP frequency was decreased in D1+, but not D2+, MSNs, whereas in females sEPSP frequency decreased in D2+, but not D1+, MSNs. Moreover, DAergic Rit2-KD abolished the ability of cocaine to reduce sEPSP frequency in D1+, but not D2+, male MSNs. Taken together, our studies are among the first to acheive AAV-mediated, conditional and inducible DAergic knockdown in vivo. Importantly, our results provide the first evidence that DAergic Rit2 expression differentially impacts striatal function and DA-dependent behaviors in males and females.
  • Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling

    Gunner, Georgia; Johnson, Kasey M.; Mondo, Erica; Liu, Liwang; Tapper, Andrew R.; Schafer, Dorothy P. (2019-07-01)
    Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1(-/-) and Cx3cl1(-/-) synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.
  • The Mechanosensitive Ion Channel Piezo Inhibits Axon Regeneration

    Song, Yuanquan; Wang, Fei; Gong, Jiaxin; Xiang, Yang; Jan, Yuh Nung (2019-04-17)
    Neurons exhibit a limited ability of repair. Given that mechanical forces affect neuronal outgrowth, it is important to investigate whether mechanosensitive ion channels may regulate axon regeneration. Here, we show that DmPiezo, a Ca(2+)-permeable non-selective cation channel, functions as an intrinsic inhibitor for axon regeneration in Drosophila. DmPiezo activation during axon regeneration induces local Ca(2+) transients at the growth cone, leading to activation of nitric oxide synthase and the downstream cGMP kinase Foraging or PKG to restrict axon regrowth. Loss of DmPiezo enhances axon regeneration of sensory neurons in the peripheral and CNS. Conditional knockout of its mammalian homolog Piezo1 in vivo accelerates regeneration, while its pharmacological activation in vitro modestly reduces regeneration, suggesting the role of Piezo in inhibiting regeneration may be evolutionarily conserved. These findings provide a precedent for the involvement of mechanosensitive channels in axon regeneration and add a potential target for modulating nervous system repair.
  • Differential expression of neurexin genes in the mouse brain

    Uchigashima, Motokazu; Cheung, Amy; Suh, Julie; Watanabe, Masahiko; Futai, Kensuke (2019-02-13)
    Synapses, highly specialized membrane junctions between neurons, connect presynaptic neurotransmitter release sites and postsynaptic ligand-gated channels. Neurexins (Nrxns), a family of presynaptic adhesion molecules, have been characterized as major regulators of synapse development and function. Via their extracellular domains, Nrxns bind to different postsynaptic proteins, generating highly diverse functional readouts through their postsynaptic binding partners. Not surprisingly given these versatile protein interactions, mutations and deletions of Nrxn genes have been identified in patients with autism spectrum disorders, intellectual disabilities, and schizophrenia. Therefore, elucidating the expression profiles of Nrxns in the brain is of high significance. Here, using chromogenic and fluorescent in situ hybridization, we characterize the expression patterns of Nrxn isoforms throughout the brain. We found that each Nrxn isoform displays a unique expression profile in a region-, cell type-, and sensory system-specific manner. Interestingly, we also found that alphaNrxn1 and alphaNrxn2 mRNAs are expressed in non-neuronal cells, including astrocytes and oligodendrocytes. Lastly, we found diverse expression patterns of genes that encode Nrxn binding proteins, such as Neuroligins (Nlgns), Leucine-rich repeat transmembrane neuronal protein (Lrrtms) and Latrophilins (Adgrls), suggesting that Nrxn proteins can mediate numerous combinations of trans-synaptic interactions. Together, our anatomical profiling of Nrxn gene expression reflects the diverse roles of Nrxn molecules.
  • Diapause induces functional axonal regeneration after necrotic insult in C. elegans

    Caneo, Mauricio; Julian, Victoria; Byrne, Alexandra B.; Alkema, Mark J.; Calixto, Andrea (2019-01-14)
    Many neurons are unable to regenerate after damage. The ability to regenerate after an insult depends on life stage, neuronal subtype, intrinsic and extrinsic factors. C. elegans is a powerful model to test the genetic and environmental factors that affect axonal regeneration after damage, since its axons can regenerate after neuronal insult. Here we demonstrate that diapause promotes the complete morphological regeneration of truncated touch receptor neuron (TRN) axons expressing a neurotoxic MEC-4(d) DEG/ENaC channel. Truncated axons of different lengths were repaired during diapause and we observed potent axonal regrowth from somas alone. Complete morphological regeneration depends on DLK-1 but neuronal sprouting and outgrowth is DLK-1 independent. We show that TRN regeneration is fully functional since animals regain their ability to respond to mechanical stimulation. Thus, diapause induced regeneration provides a simple model of complete axonal regeneration which will greatly facilitate the study of environmental and genetic factors affecting the rate at which neurons die.
  • Focal adhesion molecules regulate astrocyte morphology and glutamate transporters to suppress seizure-like behavior

    Cho, Sukhee; Muthukumar, Allie; Stork, Tobias; Coutinho-Budd, Jaeda C.; Freeman, Marc R. (2018-10-30)
    Astrocytes are important regulators of neural circuit function and behavior in the healthy and diseased nervous system. We screened for molecules in Drosophila astrocytes that modulate neuronal hyperexcitability and identified multiple components of focal adhesion complexes (FAs). Depletion of astrocytic Tensin, beta-integrin, Talin, focal adhesion kinase (FAK), or matrix metalloproteinase 1 (Mmp1), resulted in enhanced behavioral recovery from genetic or pharmacologically induced seizure. Overexpression of Mmp1, predicted to activate FA signaling, led to a reciprocal enhancement of seizure severity. Blockade of FA-signaling molecules in astrocytes at basal levels of CNS excitability resulted in reduced astrocytic coverage of the synaptic neuropil and expression of the excitatory amino acid transporter EAAT1. However, induction of hyperexcitability after depletion of FA-signaling components resulted in enhanced astrocyte coverage and an approximately twofold increase in EAAT1 levels. Our work identifies FA-signaling molecules as important regulators of astrocyte outgrowth and EAAT1 expression under normal physiological conditions. Paradoxically, in the context of hyperexcitability, this pathway negatively regulates astrocytic process outgrowth and EAAT1 expression, and their blockade leading to enhanced recovery from seizure.

View more