• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Role of Non-Coding Regulatory Elements in Complex Traits and Immune-Mediated Disease

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    HEP-Dissertation-September.pdf
    Embargo:
    2024-09-12
    Size:
    25.52Mb
    Format:
    PDF
    Download
    Authors
    Pratt, Henry cc
    Faculty Advisor
    Zhiping Weng
    Academic Program
    Bioinformatics and Computational Biology
    UMass Chan Affiliations
    Program in Bioinformatics and Integrative Biology
    Document Type
    Doctoral Dissertation
    Publication Date
    2022-09-12
    Keywords
    immune-mediated disease
    
    Metadata
    Show full item record
    Abstract
    The completion of the Human Genome Project ushered in the age of genome-wide association studies (GWAS), which have associated thousands of single nucleotide polymorphisms (SNPs) and other sequence variants with complex traits and diseases. Despite this success, progress bridging these associations to pathophysiologic understanding and new therapeutic interventions has been limited. In large part, this owes to the fact that 90% of GWAS-identified variants are non-coding–they do not impact the structure or function of proteins. Unraveling the impacts of non-coding sequence variants is one of the most significant unsolved problems in biology. Non-coding GWAS variants are enriched within cis-regulatory elements (CREs), sequences of DNA which modulate the expression, rather than the function, of target genes. These include promoters, which are immediately adjacent to the gene they regulate; enhancers, which increase expression of distant genes; silencers, which reduce the expression of distant genes; and insulators, which divide chromatin into domains to regulate interactions between other CREs. The function of CREs is modulated in part by transcription factors (TFs), DNA binding proteins which recognize and bind short characteristic DNA sequences called motifs. TFs and CREs are tissue- and cell type-specific, frequently regulating gene expression in only a few of the thousands of distinct cell and tissue types comprising the human body. Here we present work leveraging deep sequencing data and evolutionary conservation to build comprehensive atlases of cis-regulatory elements and transcription factor binding sites in the human genome, along with work architecting visualization platforms to make these atlases more accessible to, and impactful for, the scientific community. We then illustrate a key role for the sites in our atlases, particularly those evolutionarily constrained throughout the mammalian lineage, in complex traits and diseases. We conclude by presenting two case studies utilizing these datasets: one to better understand the role of non-coding variants in primary sclerosing cholangitis, a rare immune-mediated liver disease, and a second to understand the sequence features underlying strong insulator elements in the human genome.
    DOI
    10.13028/e7hv-m694
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/51137
    Rights
    Copyright © 2022 Pratt.
    Distribution License
    All Rights Reserved
    ae974a485f413a2113503eed53cd6c53
    10.13028/e7hv-m694
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Dissertations and Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.