Show simple item record

dc.contributor.authorPerica, Tina
dc.contributor.authorMathy, Christopher J P
dc.contributor.authorXu, Jiewei
dc.contributor.authorJang, Gwendolyn Μ
dc.contributor.authorZhang, Yang
dc.contributor.authorKaake, Robyn
dc.contributor.authorOllikainen, Noah
dc.contributor.authorBraberg, Hannes
dc.contributor.authorSwaney, Danielle L
dc.contributor.authorLambright, David G
dc.contributor.authorKelly, Mark J S
dc.contributor.authorKrogan, Nevan J
dc.contributor.authorKortemme, Tanja
dc.date.accessioned2023-02-09T20:56:07Z
dc.date.available2023-02-09T20:56:07Z
dc.date.issued2021-10-13
dc.identifier.citationPerica T, Mathy CJP, Xu J, Jang GΜ, Zhang Y, Kaake R, Ollikainen N, Braberg H, Swaney DL, Lambright DG, Kelly MJS, Krogan NJ, Kortemme T. Systems-level effects of allosteric perturbations to a model molecular switch. Nature. 2021 Nov;599(7883):152-157. doi: 10.1038/s41586-021-03982-6. Epub 2021 Oct 13. PMID: 34646016; PMCID: PMC8571063.en_US
dc.identifier.eissn1476-4687
dc.identifier.doi10.1038/s41586-021-03982-6en_US
dc.identifier.pmid34646016
dc.identifier.urihttp://hdl.handle.net/20.500.14038/51671
dc.description.abstractMolecular switch proteins whose cycling between states is controlled by opposing regulators1,2 are central to biological signal transduction. As switch proteins function within highly connected interaction networks3, the fundamental question arises of how functional specificity is achieved when different processes share common regulators. Here we show that functional specificity of the small GTPase switch protein Gsp1 in Saccharomyces cerevisiae (the homologue of the human protein RAN)4 is linked to differential sensitivity of biological processes to different kinetics of the Gsp1 (RAN) switch cycle. We make 55 targeted point mutations to individual protein interaction interfaces of Gsp1 (RAN) and show through quantitative genetic5 and physical interaction mapping that Gsp1 (RAN) interface perturbations have widespread cellular consequences. Contrary to expectation, the cellular effects of the interface mutations group by their biophysical effects on kinetic parameters of the GTPase switch cycle and not by the targeted interfaces. Instead, we show that interface mutations allosterically tune the GTPase cycle kinetics. These results suggest a model in which protein partner binding, or post-translational modifications at distal sites, could act as allosteric regulators of GTPase switching. Similar mechanisms may underlie regulation by other GTPases, and other biological switches. Furthermore, our integrative platform to determine the quantitative consequences of molecular perturbations may help to explain the effects of disease mutations that target central molecular switches.en_US
dc.language.isoenen_US
dc.relation.ispartofNatureen_US
dc.relation.urlhttps://doi.org/10.1038/s41586-021-03982-6en_US
dc.rights© 2021. The Author(s), under exclusive licence to Springer Nature Limited.en_US
dc.subjectGTP-binding protein regulatorsen_US
dc.subjectMolecular conformationen_US
dc.subjectNetworks and systems biologyen_US
dc.subjectProteomic analysisen_US
dc.subjectRegulatory networksen_US
dc.titleSystems-level effects of allosteric perturbations to a model molecular switchen_US
dc.typeJournal Articleen_US
dc.source.journaltitleNature
dc.source.volume599
dc.source.issue7883
dc.source.beginpage152
dc.source.endpage157
dc.source.countryUnited States
dc.source.countryUnited Kingdom
dc.source.countryUnited States
dc.source.countryUnited Kingdom
dc.source.countryUnited States
dc.source.countryEngland
dc.identifier.journalNature
dc.contributor.departmentBiochemistry and Molecular Biotechnologyen_US
dc.contributor.departmentProgram in Molecular Medicineen_US


This item appears in the following Collection(s)

Show simple item record