• Login
    View Item 
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Radiology
    • Radiology Publications
    • View Item
    •   Home
    • UMass Chan Departments, Programs and Centers
    • Radiology
    • Radiology Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mesh modeling of system geometry and anatomy phantoms for realistic GATE simulations and their inclusion in SPECT reconstruction

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Auer+et+al_2023_Phys._Med._Bio ...
    Embargo:
    2024-02-21
    Size:
    2.030Mb
    Format:
    PDF
    Download
    Authors
    Auer, Benjamin
    Konik, Arda
    Fromme, Timothy J
    De Beenhouwer, Jan
    Kalluri, Kesava S
    Lindsay, Clifford
    Furenlid, Lars R
    Kuo, Phillip H
    King, Michael A
    UMass Chan Affiliations
    Radiology
    Document Type
    Accepted Manuscript
    Publication Date
    2023-02-21
    Keywords
    AdaptiSPECT-C
    GATE simulation
    Simulation of complex system and phantom geometries
    XCAT phantom
    brain SPECT imaging
    computer aided design software
    triangulated mesh
    
    Metadata
    Show full item record
    Link to Full Text
    https://doi.org/10.1088/1361-6560/acbde2
    Abstract
    Objective: Monte-Carlo simulation studies have been essential for advancing various developments in SPECT imaging, such as system design and accurate image reconstruction. Among the simulation software available, GATE is one of the most used simulation toolkits in nuclear medicine, which allows building systems and attenuation phantom geometries based on the combination of idealized volumes. However, these idealized volumes are inadequate for modeling free-form shape components of such geometries. Recent GATE versions alleviate these major limitations by allowing users to import triangulated surface meshes. Approach: In this study, we describe our mesh-based simulations of a next-generation multi-pinhole SPECT system dedicated to clinical brain imaging, called AdaptiSPECT-C. To simulate realistic imaging data, we incorporated in our simulation the XCAT phantom, which provides an advanced anatomical description of the human body. An additional challenge with the AdaptiSPECT-C geometry is that the default voxelized XCAT attenuation phantom was not usable in our simulation due to intersection of objects of dissimilar materials caused by overlap of the air containing regions of the XCAT beyond the surface of the phantom and the components of the imaging system. Main results: We validated our mesh-based modeling against the one constructed by idealized volumes for a simplified single vertex configuration of AdaptiSPECT-C through simulated projection data of 123I-activity distributions. We resolved the overlap conflict by creating and incorporating a mesh-based attenuation phantom following a volume hierarchy. We then evaluated our reconstructions with attenuation and scatter correction for projections obtained from simulation consisting of mesh-based modeling of the system and the attenuation phantom for brain imaging. Our approach demonstrated similar performance as the reference scheme simulated in air for uniform and clinical-like 123I-IMP brain perfusion source distributions. Significance: This work enables the simulation of complex SPECT acquisitions and reconstructions for emulating realistic imaging data close to those of actual patients.
    Source
    Auer B, Konik A, Fromme TJ, De Beenhouwer J, Kalluri KS, Lindsay C, Furenlid LR, Kuo PH, King MA. Mesh modeling of system geometry and anatomy phantoms for realistic GATE simulations and their inclusion in SPECT reconstruction. Phys Med Biol. 2023 Feb 21. doi: 10.1088/1361-6560/acbde2. Epub ahead of print. PMID: 36808915.
    DOI
    10.1088/1361-6560/acbde2
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/51821
    PubMed ID
    36808915
    Rights
    This Accepted Manuscript is © 2023 Institute of Physics and Engineering in Medicine. During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere. As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period. After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0 Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record. View the article online for updates and enhancements.
    ae974a485f413a2113503eed53cd6c53
    10.1088/1361-6560/acbde2
    Scopus Count
    Collections
    Radiology Publications

    entitlement

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.