We are upgrading the repository! A content freeze is in effect until December 6, 2024. New submissions or changes to existing items will not be allowed during this period. All content already published will remain publicly available for searching and downloading. Updates will be posted in the Website Upgrade 2024 FAQ in the sidebar Help menu. Reach out to escholarship@umassmed.edu with any questions.
Mesh modeling of system geometry and anatomy phantoms for realistic GATE simulations and their inclusion in SPECT reconstruction
Authors
Auer, BenjaminKonik, Arda
Fromme, Timothy J
De Beenhouwer, Jan
Kalluri, Kesava S
Lindsay, Clifford
Furenlid, Lars R
Kuo, Phillip H
King, Michael A
UMass Chan Affiliations
RadiologyDocument Type
Accepted ManuscriptPublication Date
2023-02-21Keywords
AdaptiSPECT-CGATE simulation
Simulation of complex system and phantom geometries
XCAT phantom
brain SPECT imaging
computer aided design software
triangulated mesh
Metadata
Show full item recordAbstract
Objective: Monte-Carlo simulation studies have been essential for advancing various developments in SPECT imaging, such as system design and accurate image reconstruction. Among the simulation software available, GATE is one of the most used simulation toolkits in nuclear medicine, which allows building systems and attenuation phantom geometries based on the combination of idealized volumes. However, these idealized volumes are inadequate for modeling free-form shape components of such geometries. Recent GATE versions alleviate these major limitations by allowing users to import triangulated surface meshes. Approach: In this study, we describe our mesh-based simulations of a next-generation multi-pinhole SPECT system dedicated to clinical brain imaging, called AdaptiSPECT-C. To simulate realistic imaging data, we incorporated in our simulation the XCAT phantom, which provides an advanced anatomical description of the human body. An additional challenge with the AdaptiSPECT-C geometry is that the default voxelized XCAT attenuation phantom was not usable in our simulation due to intersection of objects of dissimilar materials caused by overlap of the air containing regions of the XCAT beyond the surface of the phantom and the components of the imaging system. Main results: We validated our mesh-based modeling against the one constructed by idealized volumes for a simplified single vertex configuration of AdaptiSPECT-C through simulated projection data of 123I-activity distributions. We resolved the overlap conflict by creating and incorporating a mesh-based attenuation phantom following a volume hierarchy. We then evaluated our reconstructions with attenuation and scatter correction for projections obtained from simulation consisting of mesh-based modeling of the system and the attenuation phantom for brain imaging. Our approach demonstrated similar performance as the reference scheme simulated in air for uniform and clinical-like 123I-IMP brain perfusion source distributions. Significance: This work enables the simulation of complex SPECT acquisitions and reconstructions for emulating realistic imaging data close to those of actual patients.Source
Auer B, Konik A, Fromme TJ, De Beenhouwer J, Kalluri KS, Lindsay C, Furenlid LR, Kuo PH, King MA. Mesh modeling of system geometry and anatomy phantoms for realistic GATE simulations and their inclusion in SPECT reconstruction. Phys Med Biol. 2023 Feb 21. doi: 10.1088/1361-6560/acbde2. Epub ahead of print. PMID: 36808915.DOI
10.1088/1361-6560/acbde2Permanent Link to this Item
http://hdl.handle.net/20.500.14038/51821PubMed ID
36808915Rights
This Accepted Manuscript is © 2023 Institute of Physics and Engineering in Medicine. During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere. As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period. After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0 Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record. View the article online for updates and enhancements.ae974a485f413a2113503eed53cd6c53
10.1088/1361-6560/acbde2