• Login
    View Item 
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    •   Home
    • UMass Chan Student Research and Publications
    • Morningside Graduate School of Biomedical Sciences
    • Morningside Graduate School of Biomedical Sciences Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of eScholarship@UMassChanCommunitiesPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywordsThis CollectionPublication DateAuthorsUMass Chan AffiliationsTitlesDocument TypesKeywords

    My Account

    LoginRegister

    Help

    AboutSubmission GuidelinesData Deposit PolicySearchingAccessibilityTerms of UseWebsite Migration FAQ

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Molecular Mechanism of RIPK1-Induced Cell Death And Its Impact On The Immune Response

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    042523ChristaParkDissertation.pdf
    Embargo:
    2025-05-02
    Size:
    4.337Mb
    Format:
    PDF
    Download
    Authors
    Park, Christa
    Faculty Advisor
    Francis Ka-Ming Chan
    Academic Program
    Immunology and Microbiology
    UMass Chan Affiliations
    Pathology
    Document Type
    Doctoral Dissertation
    Publication Date
    2023-04-25
    Keywords
    Cell Death
    RIPK1
    RIPK3
    MLKL
    Inflammation
    IBD
    colitis
    caspase-8
    TNFR1
    Apoptosis
    necroptosis
    colitis
    Show allShow less
    
    Metadata
    Show full item record
    Abstract
    Receptor-interacting serine/threonine protein kinase 1 (RIPK1) is a critical adapter protein with pleiotropic functions that regulate cell survival and death. RIPK1 is essential for immune homeostasis and thus is closely controlled during development and inflammation. RIPK1 overexpression has been implicated in multiple inflammatory disorders such as multiple sclerosis, atherosclerosis, cardiovascular disease, obesity, psoriasis, and tumor growth. To study the effects of the overactivation of RIPK1, a system was established that drives its overexpression in mouse fibroblasts. Remarkably, the overexpression of RIPK1 resulted in the induction of both apoptosis and necroptosis. While apoptosis is known to be immunologically silent, necroptosis is highly inflammatory. Additional assays using chemical inhibitors and genetic knockout mice established that RIPK1 kinase activity promotes both types of cell death. Furthermore, RIPK1-induced apoptosis and necroptosis require caspase 8 and MLKL, respectively, and the absence of both caspase 8 and MLKL inhibits RIPK1-induced cell death. RIPK1 induction activates NF-κB/MAPK and increases cytokine/chemokine production driven by cell death. This system was further explored to elucidate the effects of RIPK1-induced cell death on immune effector cells, revealing that RIPK1-induced apoptosis and necroptosis can promote DC activation. Lastly, to study the role of RIPK1 in DCs and its contribution to intestinal homeostasis and injury, mice lacking RIPK1 in the DC population were characterized. Importantly, RIPK1 functions in DCs to support colon homeostasis, but also plays a detrimental role during DSS-induced colitis. Collectively, these data further provide novel insights into the multifaceted functions of RIPK1 in cell death and inflammation, highlighting its critical contributions to the immune response.
    DOI
    10.13028/tyab-cd94
    Permanent Link to this Item
    http://hdl.handle.net/20.500.14038/52023
    Rights
    Copyright © 2023 Christa So-Hyun Park
    Distribution License
    All Rights Reserved
    ae974a485f413a2113503eed53cd6c53
    10.13028/tyab-cd94
    Scopus Count
    Collections
    Morningside Graduate School of Biomedical Sciences Dissertations and Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Lamar Soutter Library, UMass Chan Medical School | 55 Lake Avenue North | Worcester, MA 01655 USA
    Quick Guide | escholarship@umassmed.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.