TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration
Student Authors
Victoria Julian CzechLauren O'Connor
Brendan Philippon
Academic Program
NeuroscienceDocument Type
Journal ArticlePublication Date
2023-04-21
Metadata
Show full item recordAbstract
Growth and destruction are central components of the neuronal injury response. Injured axons that are capable of repair, including axons in the mammalian peripheral nervous system and in many invertebrate animals, often regenerate and degenerate on either side of the injury. Here we show that TIR-1/dSarm/SARM1, a key regulator of axon degeneration, also inhibits regeneration of injured motor axons. The increased regeneration in tir-1 mutants is not a secondary consequence of its effects on degeneration, nor is it determined by the NADase activity of TIR-1. Rather, we found that TIR-1 functions cell-autonomously to regulate each of the seemingly opposite processes through distinct interactions with two MAP kinase pathways. On one side of the injury, TIR-1 inhibits axon regeneration by activating the NSY-1/ASK1 MAPK signaling cascade, while on the other side of the injury, TIR-1 simultaneously promotes axon degeneration by interacting with the DLK-1 mitogen-activated protein kinase (MAPK) signaling cascade. In parallel, we found that the ability to cell-intrinsically inhibit axon regeneration is conserved in human SARM1. Our finding that TIR-1/SARM1 regulates axon regeneration provides critical insight into how axons coordinate a multidimensional response to injury, consequently informing approaches to manipulate the response toward repair.Source
Czech VL, O'Connor LC, Philippon B, Norman E, Byrne AB. TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration. Elife. 2023 Apr 21;12:e80856. doi: 10.7554/eLife.80856. PMID: 37083456; PMCID: PMC10121217.DOI
10.7554/eLife.80856Permanent Link to this Item
http://hdl.handle.net/20.500.14038/52027PubMed ID
37083456Rights
Copyright Czech, O'Connor et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.; Attribution 4.0 InternationalDistribution License
http://creativecommons.org/licenses/by/4.0/ae974a485f413a2113503eed53cd6c53
10.7554/eLife.80856
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Copyright Czech, O'Connor
et al. This article is distributed
under the terms of the Creative
Commons Attribution License,
which permits unrestricted use
and redistribution provided that
the original author and source
are credited.