Integrative analysis of clinical and epigenetic biomarkers of mortality
dc.contributor.author | Huan, Tianxiao | |
dc.contributor.author | Nguyen, Steve | |
dc.contributor.author | Colicino, Elena | |
dc.contributor.author | Ochoa-Rosales, Carolina | |
dc.contributor.author | Hill, W David | |
dc.contributor.author | Brody, Jennifer A | |
dc.contributor.author | Soerensen, Mette | |
dc.contributor.author | Zhang, Yan | |
dc.contributor.author | Baldassari, Antoine | |
dc.contributor.author | Elhadad, Mohamed Ahmed | |
dc.contributor.author | Toshiko, Tanaka | |
dc.contributor.author | Zheng, Yinan | |
dc.contributor.author | Domingo-Relloso, Arce | |
dc.contributor.author | Lee, Dong Heon | |
dc.contributor.author | Ma, Jiantao | |
dc.contributor.author | Yao, Chen | |
dc.contributor.author | Liu, Chunyu | |
dc.contributor.author | Hwang, Shih-Jen | |
dc.contributor.author | Joehanes, Roby | |
dc.contributor.author | Fornage, Myriam | |
dc.contributor.author | Bressler, Jan | |
dc.contributor.author | van Meurs, Joyce B J | |
dc.contributor.author | Debrabant, Birgit | |
dc.contributor.author | Mengel-From, Jonas | |
dc.contributor.author | Hjelmborg, Jacob | |
dc.contributor.author | Christensen, Kaare | |
dc.contributor.author | Vokonas, Pantel | |
dc.contributor.author | Schwartz, Joel | |
dc.contributor.author | Gahrib, Sina A | |
dc.contributor.author | Sotoodehnia, Nona | |
dc.contributor.author | Sitlani, Colleen M | |
dc.contributor.author | Kunze, Sonja | |
dc.contributor.author | Gieger, Christian | |
dc.contributor.author | Peters, Annette | |
dc.contributor.author | Waldenberger, Melanie | |
dc.contributor.author | Deary, Ian J | |
dc.contributor.author | Ferrucci, Luigi | |
dc.contributor.author | Qu, Yishu | |
dc.contributor.author | Greenland, Philip | |
dc.contributor.author | Lloyd-Jones, Donald M | |
dc.contributor.author | Hou, Lifang | |
dc.contributor.author | Bandinelli, Stefania | |
dc.contributor.author | Voortman, Trudy | |
dc.contributor.author | Hermann, Brenner | |
dc.contributor.author | Baccarelli, Andrea | |
dc.contributor.author | Whitsel, Eric | |
dc.contributor.author | Pankow, James S | |
dc.contributor.author | Levy, Daniel | |
dc.date.accessioned | 2023-09-22T19:16:36Z | |
dc.date.available | 2023-09-22T19:16:36Z | |
dc.date.issued | 2022-05-12 | |
dc.identifier.citation | Huan T, Nguyen S, Colicino E, Ochoa-Rosales C, Hill WD, Brody JA, Soerensen M, Zhang Y, Baldassari A, Elhadad MA, Toshiko T, Zheng Y, Domingo-Relloso A, Lee DH, Ma J, Yao C, Liu C, Hwang SJ, Joehanes R, Fornage M, Bressler J, van Meurs JBJ, Debrabant B, Mengel-From J, Hjelmborg J, Christensen K, Vokonas P, Schwartz J, Gahrib SA, Sotoodehnia N, Sitlani CM, Kunze S, Gieger C, Peters A, Waldenberger M, Deary IJ, Ferrucci L, Qu Y, Greenland P, Lloyd-Jones DM, Hou L, Bandinelli S, Voortman T, Hermann B, Baccarelli A, Whitsel E, Pankow JS, Levy D. Integrative analysis of clinical and epigenetic biomarkers of mortality. Aging Cell. 2022 Jun;21(6):e13608. doi: 10.1111/acel.13608. Epub 2022 May 12. PMID: 35546478; PMCID: PMC9197414. | en_US |
dc.identifier.eissn | 1474-9726 | |
dc.identifier.doi | 10.1111/acel.13608 | en_US |
dc.identifier.pmid | 35546478 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14038/52553 | |
dc.description.abstract | DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome-wide association study of whole blood DNAm in relation to mortality in 15 cohorts (n = 15,013). During a mean follow-up of 10 years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry-stratified meta-analysis of all-cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at p < 1 × 10-7 , of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm-based prediction models for all-cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5% increase in the C-index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta = 1.2, PMR = 4.1 × 10-4 ) and negatively associated with longevity (Beta = -1.9, PMR = 0.02). Pathway analysis revealed that genes associated with mortality-related CpGs are enriched for immune- and cancer-related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Aging Cell | en_US |
dc.relation.url | https://doi.org/10.1111/acel.13608 | en_US |
dc.rights | This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2022 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. | en_US |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | DNA methylation | en_US |
dc.subject | cancer | en_US |
dc.subject | cardiovascular disease | en_US |
dc.subject | machine learning | en_US |
dc.subject | mortality | en_US |
dc.title | Integrative analysis of clinical and epigenetic biomarkers of mortality | en_US |
dc.type | Journal Article | en_US |
dc.source.journaltitle | Aging cell | |
dc.source.volume | 21 | |
dc.source.issue | 6 | |
dc.source.beginpage | e13608 | |
dc.source.endpage | ||
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United Kingdom | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United Kingdom | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United Kingdom | |
dc.source.country | England | |
dc.identifier.journal | Aging cell | |
refterms.dateFOA | 2023-09-22T19:16:37Z | |
dc.contributor.department | Ophthalmology and Visual Sciences | en_US |