Partial skeletal muscle-specific Drp1 knockout enhances insulin sensitivity in diet-induced obese mice, but not in lean mice
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Authors
Kugler, Benjamin ALourie, Jared
Berger, Nicolas
Lin, Nana
Nguyen, Paul
DosSantos, Edzana
Ali, Abir
Sesay, Amira
Rosen, H Grace
Kalemba, Baby
Hendricks, Gregory M
Houmard, Joseph A
Sesaki, Hiromi
Gona, Philimon
You, Tongjian
Yan, Zhen
Zou, Kai
UMass Chan Affiliations
RadiologyDocument Type
Journal ArticlePublication Date
2023-09-09
Metadata
Show full item recordAbstract
Objective: Dynamin-related protein 1 (Drp1) is the key regulator of mitochondrial fission. We and others have reported a strong correlation between enhanced Drp1 activity and impaired skeletal muscle insulin sensitivity. This study aimed to determine whether Drp1 directly regulates skeletal muscle insulin sensitivity and whole-body glucose homeostasis. Methods: We employed tamoxifen-inducible skeletal muscle-specific heterozygous Drp1 knockout mice (mDrp1+/-). Male mDrp1+/- and wildtype (WT) mice were fed with either a high-fat diet (HFD) or low-fat diet (LFD) for four weeks, followed by tamoxifen injections for five consecutive days, and remained on their respective diet for another four weeks. In addition, we used primary human skeletal muscle cells (HSkMC) from lean, insulin-sensitive, and severely obese, insulin-resistant humans and transfected the cells with either a Drp1 shRNA (shDrp1) or scramble shRNA construct. Skeletal muscle and whole-body insulin sensitivity, skeletal muscle insulin signaling, mitochondrial network morphology, respiration, and H2O2 production were measured. Results: Partial deletion of the Drp1 gene in skeletal muscle led to improved whole-body glucose tolerance and insulin sensitivity (P < 0.05) in diet-induced obese, insulin-resistant mice but not in lean mice. Analyses of mitochondrial structure and function revealed that the partial deletion of the Drp1 gene restored mitochondrial dynamics, improved mitochondrial morphology, and reduced mitochondrial Complex I- and II-derived H2O2 (P < 0.05) under the condition of diet-induced obesity. In addition, partial deletion of Drp1 in skeletal muscle resulted in elevated circulating FGF21 (P < 0.05) and in a trend towards increase of FGF21 expression in skeletal muscle tissue (P = 0.095). In primary myotubes derived from severely obese, insulin-resistant humans, ShRNA-induced-knockdown of Drp1 resulted in enhanced insulin signaling, insulin-stimulated glucose uptake and reduced cellular reactive oxygen species (ROS) content compared to the shScramble-treated myotubes from the same donors (P < 0.05). Conclusion: These data demonstrate that partial loss of skeletal muscle-specific Drp1 expression is sufficient to improve whole-body glucose homeostasis and insulin sensitivity under obese, insulin-resistant conditions, which may be, at least in part, due to reduced mitochondrial H2O2 production. In addition, our findings revealed divergent effects of Drp1 on whole-body metabolism under lean healthy or obese insulin-resistant conditions in mice.Source
Kugler BA, Lourie J, Berger N, Lin N, Nguyen P, DosSantos E, Ali A, Sesay A, Rosen HG, Kalemba B, Hendricks GM, Houmard JA, Sesaki H, Gona P, You T, Yan Z, Zou K. Partial skeletal muscle-specific Drp1 knockout enhances insulin sensitivity in diet-induced obese mice, but not in lean mice. Mol Metab. 2023 Sep 9;77:101802. doi: 10.1016/j.molmet.2023.101802. Epub ahead of print. PMID: 37690520; PMCID: PMC10511484.DOI
10.1016/j.molmet.2023.101802Permanent Link to this Item
http://hdl.handle.net/20.500.14038/52613PubMed ID
37690520Rights
Copyright 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).; Attribution-NonCommercial-NoDerivatives 4.0 InternationalDistribution License
http://creativecommons.org/licenses/by-nc-nd/4.0/ae974a485f413a2113503eed53cd6c53
10.1016/j.molmet.2023.101802
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Copyright 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).