Tetraspanin-5-mediated MHC class I clustering is required for optimal CD8 T cell activation
Abstract
MHC molecules are not randomly distributed on the plasma membrane but instead are present in discrete nanoclusters. The mechanisms that control formation of MHC I nanoclusters and the importance of such structures are incompletely understood. Here, we report a molecular association between tetraspanin-5 (Tspan5) and MHC I molecules that started in the endoplasmic reticulum and was maintained on the plasma membrane. This association was observed both in mouse dendritic cells and in human cancer cell lines. Loss of Tspan5 reduced the size of MHC I clusters without affecting MHC I peptide loading, delivery of complexes to the plasma membrane, or overall surface MHC I levels. Functionally, CD8 T cell responses to antigen presented by Tspan5-deficient dendritic cells were impaired but were restored by antibody-induced reclustering of MHC I molecules. In contrast, Tspan5 did not associate with two other plasma membrane proteins, Flotillin1 and CD55, with or the endoplasmic reticulum proteins Tapasin and TAP. Thus, our findings identify a mechanism underlying the clustering of MHC I molecules that is important for optimal T cell responses.Source
Colbert JD, Cruz FM, Baer CE, Rock KL. Tetraspanin-5-mediated MHC class I clustering is required for optimal CD8 T cell activation. Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2122188119. doi: 10.1073/pnas.2122188119. Epub 2022 Oct 10. PMID: 36215490; PMCID: PMC9586303.DOI
10.1073/pnas.2122188119Permanent Link to this Item
http://hdl.handle.net/20.500.14038/53166PubMed ID
36215490Rights
Copyright © 2022 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).; Attribution-NonCommercial-NoDerivatives 4.0 InternationalDistribution License
http://creativecommons.org/licenses/by-nc-nd/4.0/ae974a485f413a2113503eed53cd6c53
10.1073/pnas.2122188119
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Copyright © 2022 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).