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Introduction
Hydrocephalus describes the lethal accumulation of cerebro-

spinal fl uid (CSF) in the brain. The incidence is 0.12–2.5 per 1,000 

live and stillbirths, and the majority of human hydrocephalus is 

of genetic origin (Schrander-Stumpel and Fryns, 1998). A num-

ber of genetic mouse models of congenital hydrocephalus have 

been described. These include hy3 mice; recently, the affected 

gene, Hydin, was identifi ed using an insertional mutant (Davy 

and Robinson, 2003). The corresponding chromosomal region in 

the human genome has also been implicated in hydrocephalus 

(Callen et al., 1990). Hydin is a conserved gene present in the 

genomes of various protists and metazoans and encoding a large 

protein of >500 kD.

In the neonatal brain of the mouse, Hydin is expressed in 

the ciliated epithelial cells lining the lateral, third, and fourth 

ventricles (Davy and Robinson, 2003). Hydin is also expressed 

in the ciliated epithelia of bronchi and oviduct and in develop-

ing spermatocytes. This expression pattern suggests a ciliary/

fl agellar function for hydin. Indeed, mutations in several other 

genes encoding ciliary proteins cause hydrocephalus in mice. 

These include Mdnah5, which encodes an axonemal dynein 

heavy chain; Spag6, a homologue of Chlamydomonas reinhardtii 
central pair (CP) component PF16; and Tg737, which encodes 

the intrafl agellar transport protein IFT88/Polaris (Sapiro et al., 

2002; Ibanez-Tallon et al., 2004; Banizs et al., 2005). Compara-

tive genomics revealed that homologues of Hydin are present in 

species with cilia/fl agella and absent in species lacking these 

organelles, such as Saccharomyces cerevisiae and Arabidopsis 
thaliana (Li et al., 2004; Pazour et al., 2005; Broadhead et al., 

2006). Hydin was identifi ed in the fl agellar proteomes of 

C.  reinhardtii (Pazour et al., 2005) and Trypanosoma brucei 
(Broadhead et al., 2006). In the proteomic analysis of fraction-

ated C. reinhardtii fl agella (Pazour et al., 2005), hydin was 

identifi ed by 69 different peptides, primarily from axonemal 

fractions, suggesting that it is abundant and tightly associated 

with the axoneme. Finally, in T. brucei, hydin ablation by RNAi 

resulted in reduced motility (Broadhead et al., 2006). However, 

despite the evidence indicating a function in fl agella, neither 

hydin’s location within the organelle nor its role in fl agellar 

 assembly and motility are known. In this study, we use a com-

bination of biochemical, reverse genetic, and structural ap-

proaches to examine the function and location of hydin in the 

C. reinhardtii fl agellum.

Results
Hydin is located in the CP apparatus
C. reinhardtii hydin is a polypeptide of �540 kD encoded by a 

single copy gene, HY3, spanning �17,700 bp on linkage group I. 

To generate an antibody to C. reinhardtii hydin, a HY3 fragment 
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(Fig. 1 A, fragment A), representing exon 3, was amplifi ed from 

genomic DNA by PCR and cloned into the bacterial expression 

vector pMAL-cRI v.2 encoding maltose-binding protein (MBP). 

The MBP-hydin peptide was expressed in Escherichia coli, 
 purifi ed, and used for antibody production. A BamHI–SalI piece 

of fragment A was cloned into pGEX-6P-1, and the purifi ed 

GST-hydin peptide was used for affi nity purifi cation of the 

 antibody. The purifi ed anti- hydin antibody stained a single 

band of �540 kD in Western blots of axonemes of control cells 

(Fig. 1 B, control lane).

Similar to other fl agellar proteins, expression of HY3 is 

strongly induced after defl agellation by pH shock (Li et al., 

2004; Pazour et al., 2005; Fig. S1, available at http://www.jcb.org/

cgi/content/full/jcb.200611115/DC1). Western blot analysis 

of cell bodies and isolated fl agella revealed that hydin was 

highly enriched in the fl agella (Fig. 1 C) and attached to the 

 axonemes (Fig. 1 C b and see Fig. 7 B). Immunofl uorescence 

 microscopy combining anti-hydin with anti-acetylated tubulin 

confi rmed that hydin is present in the fl agella of wild-type cells 

(Fig. 1 D, a–c). When isolated fl agella were extracted with 

 detergent, anti-hydin staining remained associated with the 

 axonemes and overlapped with the anti-tubulin signal over the 

entire length of the axonemes (Fig. 2 A, a–c). Therefore, hydin 

is an axonemal protein and one of the largest proteins so far 

identifi ed in the fl agellum.

To determine whether hydin is associated with the outer 

doublets or the CP of microtubules, we used a modifi ed CP ex-

trusion assay. When isolated fl agella were treated with 1 mM 

ATP, trypsin, and 1% NP-40 for 2 min, the CP was partially ex-

pelled from the axonemes (Fig. 2 A d). Double labeling with 

anti-hydin and anti-acetylated tubulin revealed that hydin was 

concentrated on the CP, which was visible as a thin microtubular 

structure projecting from the distal end of the axoneme (Fig. 

2 A, e and f); accordingly, anti-hydin staining was absent from 

the proximal region of the axoneme that had been vacated by 

the CP. Treatment with an additional 1 mM of ATP after 2 and 

4 min often resulted in the complete extrusion of the CP from the 

axonemes (Fig. 2 A g). Hydin colocalized with the extruded CP 

but was absent from the axonemes that were now devoid of the 

CP (Fig. 2 A, h and i). These data show that C. reinhardtii hydin 

is located exclusively in the CP apparatus.

Hydin is associated 
with the C2 microtubule
In whole mount immunogold EM of extruded CPs (Fig. 2 B a), 

gold complexes representing hydin decorated the projecting CP 

microtubules (Fig. 2 B, b and c). Labeling was present but 

sparse on well-preserved CPs and increased as the CPs dis-

integrated, suggesting that parts of hydin targeted by the antibody 

are not readily accessible in the native CP. The majority of the 

Figure 1. HY3 gene-silencing vector and anti-
hydin antibody. (A) C. reinhardtii HY3, which 
encodes hydin, is a gene of 17.7 kb. Frag-
ment A, corresponding to exon 3 of HY3, and 
a BamHI–SalI piece of fragment A were cloned 
into bacterial expression vectors, and the fu-
sion proteins were used for antibody produc-
tion and purifi cation. A gene-silencing vector 
was constructed from fragment A, fragment S 
(another PCR product of HY3), a triple HA tag, 
and the promoter and terminator region of 
the LC8 gene. (B) Coomassie-stained gel 
(a; 4–20% SDS-PAGE) and Western blot (b; 7.5% 
SDS-PAGE) of isolated axonemes of CC3395 
(control) and the HY3 RNAi strains hyN3 and 
hyN4. Anti-hydin specifi cally stained a band 
of �540 kD that was strongly reduced in the 
HY3 RNAi strains. (C) Western blots probed 
with anti-hydin and anti-IFT172 (Cole et al., 
1998) comparing the amount of hydin present 
in defl agellated cells (CB) and isolated fl agella 
(Fla) or axonemes (Ax). (a) Equivalent num-
bers of cell bodies and fl agellar pairs from 
�106 cells were loaded. (b) Equal amounts 
(�25 μg) of cell body and axonemal protein 
were loaded. IFT172, an intrafl agellar trans-
port protein used as a control, is present in the 
cell body and fl agella; a considerable amount 
remains with the axonemes (Hou et al., 2004). 
(D) Immunofl uorescence images of methanol-
fi xed cells of strains CC3395 (control), hyN4, 
and hyS2 labeled with anti-acetylated tubulin 
(a, d, and g) and anti-hydin (b, e, and h). 
Merged images (c, f, and i) reveal the localiza-
tion of hydin to the fl agella of wild-type cells 
and the reduction of hydin in the hydin RNAi 
cells. Note the shorter fl agella in the latter. At 
least part of the fl uorescence in the cell bodies 
stained with anti-hydin is background caused 
by chlorophyll autofl uorescence. Bar, 5 μm.
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gold particles (76%; n = 275) was present on the microtubule 

located on the concave side of the arc formed by the CP; for this 

analysis, only gold complexes on CPs with well-preserved, in-

tact microtubules were scored. Previous studies have shown that 

this is the C2 microtubule (see Fig. 6 K for a schematic drawing 

of the CP; Bernstein et al., 1994; Bernstein and Rosenbaum, 

1994). As a control, we carried out a similar immunolocaliza-

tion using antibodies to CPC1 (Zhang and Mitchell, 2004) and 

PF6 (Wargo et al., 2005), both components of the C1 micro-

tubule (Mitchell and Sale, 1999; Rupp et al., 2001; Fig. 2, d and e). 

As expected, these antibodies decorated the CP microtubule on 

the convex side of the arc (PF6, 94% and n = 56; CPC1, 91% 

and n = 23). Thus, that portion of hydin encoded by exon 3 is 

closely associated with the C2 microtubule.

Hydin is greatly reduced in mutants 
lacking the CP
In C. reinhardtii, the mutants pf15a and pf18 fail to assemble the 

CP (Witman et al., 1972, 1978; Adams et al., 1981). We exam-

ined the fl agella of these mutants to confi rm that hydin is a com-

ponent of the CP. In immunofl uorescence microscopy, the hydin 

signal was strong in detached fl agella of wild type (CC124; Fig. 

3 A, a and b) but greatly reduced in detached fl agella of pf15a 

and pf18 (Fig. 3 A, c–f). In the fl agella of these mutants, the CP 

is replaced by an amorphous core (Witman et al., 1972, 1978; 

Adams et al., 1981), which may account for the residual hydin 

signal. This amorphous core is lost from most (80–90%) of the 

isolated axonemes of the mutants (Witman et al., 1978; Adams 

et al., 1981), and indeed, Western blot analysis of isolated axo-

nemes from pf15a and pf18 revealed only traces of hydin in both 

mutants (Fig. 3 B). These results provide strong independent 

evidence that hydin is a component of the CP apparatus.

Figure 2. Hydin localizes to the CP. (A) Immuno-
fluorescence microscopy of isolated axo-
nemes (a–c) and axonemes treated with ATP 
and trypsin to induce partial (d–f) or complete 
(g–i) extrusion of the CP. Staining with anti-
acetylated tubulin (a, d, and g) reveals the 
CP as a thin microtubular bundle projecting 
(arrowheads in d and f) or completely extruded 
(arrowheads in g and i) from the axonemes. 
Anti-hydin staining (b, e, and h) colocalized 
with the thin microtubular structures (arrow-
heads in f and i) and was absent from regions 
of axonemes now vacated by the CP (f) as 
well as entire axonemes from which the CP 
was completely extruded (i). Because of the 
prolonged incubation with protease, signal 
strength had declined in panels h and i. Bar, 
5 μm. (B) Whole mount immunogold EM of ex-
truded CPs. (a) Negatively stained axonemes 
with protruding CPs (arrowheads) showing 
the preparation used for immunogold labeling 
 experiments. (b and c) 15-nm gold complexes 
(arrowheads) labeling hydin were observed 
mostly along the C2 microtubule on the con-
cave side of the arc formed by the CP. The 
bracket shows increased label density on dis-
integrated CP. (d and e) In contrast, gold par-
ticles labeling the C1 proteins CPC1 (d) and 
PF6 (e) were predominately located on the 
convex side of the CP. Immunostaining with anti-
PF6 was performed as described by Bernstein 
et al. (1994). Bars: (a) 2 μm; (b–d) 500 nm; 
(e) 350 nm.

Figure 3. Hydin is greatly reduced in fl agella of CP mutants. (A) Immuno-
fl uorescence microscopy of detached fl agella. Wild-type (CC124; a and b), 
pf15a (c and d), and pf18 (e and f) cells were allowed to settle onto 
 polyethylenimine-treated slides that were then submerged into −20°C 
methanol. This procedure frequently caused the fl agella to detach, and 
the cell bodies were subsequently washed off. (top) Anti-hydin signal; 
(bottom) merged images of anti-hydin and anti-acetylated tubulin. The 
 hydin signal was nearly undetectable in fl agella of pf15a and pf18. Bar, 
5 μm. (B) Western blot of isolated axonemes of CC124 (wild type), 
pf15a, and pf18. The blot was probed with anti-hydin and an antibody 
to the outer  dynein arm intermediate chain IC2 (King and Witman, 1990) 
as a loading control.
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HY3 RNAi effectively reduced hydin 
mRNA and protein
Mutations of HY3 in C. reinhardtii have not yet been identifi ed. 

To investigate the function of hydin, an RNAi vector targeting 

C. reinhardtii HY3 was constructed by cloning HY3 fragment S 

in sense and HY3 fragment A in antisense orientation down-

stream of the LC8 promoter and upstream of a triple HA tag and 

the LC8 terminator (Fig. 1 A). The resulting plasmid, pKL3-

hyAS, was cotransformed into C. reinhardtii cells of strain 

CC3395. 39 of 204 independently derived transformants scored 

from three experiments showed a severe motility phenotype, 

with the majority of the cells resting at the bottom of the cul-

ture vessels. HY3 message levels were tested by quantitative 

RT-PCR in 11 of the nonmotile transformants. In 10 of the strains, 

HY3 was down-regulated by up to 87% (Fig. 4 A). The remaining 

strain had normal HY3 message levels and, in contrast to the 

others (see the following section), completely lacked fl agella, 

suggesting that its phenotype was due to an insertion of the 

RNAi vector into a gene necessary for fl agellar assembly.

In Western blots of isolated axonemes of selected hydin 

RNAi strains, hydin was strongly reduced (Fig. 1 B b). In immuno-

fl uorescence microscopy using the anti-hydin antibody, labeling 

of the fl agella in the RNAi strains was much weaker than in 

wild type, although the strength of the residual staining varied 

somewhat between RNAi strains and individual cells (Fig. 1 D, 

d–i). Thus, hydin depletion was confi rmed by both Western 

blotting and immunofl uorescence microscopy. Similar to earlier 

observations for RNAi of other genes in C. reinhardtii (Koblenz 

et al., 2003), hydin knockdown was not stable over an extended 

period of time. All strains returned to wild-type amounts of 

 hydin and wild-type phenotype within 2–6 mo after transformation 

(unpublished data).

Hydin knockdown causes an unusual 
form of fl agellar paralysis
The CP apparatus is thought to regulate dynein arm activity, 

 allowing coordinated fl agellar movement (Smith and Yang, 

2004). Light microscopic examination of living cells from 10 

independent hydin RNAi strains revealed that the fl agella were 

mostly paralyzed and only occasionally formed bends. Flagella 

also were shorter than those of wild-type cells, with some 

cells lacking fl agella completely (Fig. 1 D and Fig. 4, B and C). 

Strikingly, the fl agella of approximately half of the cells were 

arrested with one fl agellum in the “hands-up” position, i.e., 

pointing away from the cell body, and one fl agellum in the 

“hands-down” position, i.e., lying alongside the cell body (Fig. 

5 A). The remaining cells either had both fl agella arrested in the 

hands-down position (hyN3, 30%; hyS1, 26%) or both fl agella 

in the hands-up position (hyN3, 14%; hyS1, 27%). This is dis-

tinctly different from the phenotype of other CP mutants: the CP 

Figure 4. HY3 knockdown affects fl agellar assembly. (A) HY3 mRNA is 
reduced in HY3 RNAi cells. Quantitative PCR was used to determine the 
amount of HY3 message in several transformants. The data are shown as 
a percentage of wild type for strains hyN3, hyN4, hyN11, hyD2, hyS1, 
and hyS2 and are based on one (hyS1), two (hyD2 and hyS2), or three 
 independent isolates of total RNA. (B and C) HY3 RNAi cells have short 
fl agella or lack fl agella. Data are based on immunofl uorescence images ob-
tained with anti-acetylated tubulin. (B) Frequency of stumpy fl agella (<1 μm) 
and bald cells in control (CC3395) and the HY3 RNAi strains hyN3 
and hyN4. (C) Flagellated cells of strains hyN3 and hyN4 have shorter 
fl agella than those of the control strain CC3395. Only fl agella >1 μm 
were measured.

Figure 5. The fl agella of HY3 RNAi strains 
 arrest in the hands-up or hands-down position. 
(A) DIC image of living cells of hyN3 showing 
the resting positions of the two fl agella of 
each cell. Arrowheads indicate the hands-
down fl agellum positioned along the cell body. 
(B) Residual fl agellar movement of a hyS1 cell 
documented by DIC microscopy. The hands-
down fl agellum (arrowheads) is relatively 
 inactive. Frame numbers are indicated and 
 approximately equal the time in seconds. The 
complete sequence is shown in Video 3 (avail-
able at http://www.jcb.org/cgi/content/full/
jcb.200611115/DC1). (C) Methanol-fi xed 
hyN3 cells were double labeled with anti-
 hydin (red) and anti-acetylated tubulin (green). 
Frequently, residual hydin accumulated in one 
of the two fl agella (arrowheads). Bars, 5 μm.
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mutants pf15a, pf16, pf18, and pf19 were paralyzed with 

both fl agella in the hands-up position (95–100%; see Table I; 

pf6, cpc1, and pf20 were too motile to analyze). The relative 

 position of the eyespot was analyzed in 222 hydin RNAi cells 

showing asymmetric arrest of the two fl agella (living or rapidly 

fi xed as described by Mitchell [2003]); 45% of these had the 

trans fl agellum and 55% had the cis fl agellum, which is closer 

to the eyespot, in the hands-up position. Therefore, the tendency 

to arrest in the hands-up or hands-down position does not cor-

relate with the cis or trans fl agellum.

Although the majority (90–99%) of the hydin RNAi cells 

were paralyzed, some cells showed residual fl agellar movements 

resulting in twitching or spinning. We noticed that the fl agellum 

in the hands-up position was the more active one, which  typically 

would undergo a quick power stroke, a resting period of variable 

length, and a recovery stroke, after which it stopped again in the 

hands-up position (Fig. 5 B and Video 3, available at http://www

.jcb.org/cgi/content/full/jcb.200611115/DC1). The fl agellum in 

the hands-down position was either completely paralyzed or beat 

at a lower frequency than the hands-up fl agellum (Videos 1 and 2). 

We further observed that residual hydin in the cells examined 

by immunofl uorescence microscopy tended to be located in just 

one of the two fl agella (Fig. 5 C). Because hydin is required for 

 fl agellar motility, it is possible that the asymmetrical motility 

of fl agella observed in some HY3 RNAi strains is related to the 

unequal distribution of residual hydin in the two fl agella.

Ultrastructural and biochemical defects 
of hydin-depleted fl agella
To determine whether fl agellar paralysis was accompanied 

by ultrastructural defects of the axoneme, four strains (hyD2, 

hyN3, hyN4, and hyS2) were processed for transmission EM, 

and fl agellar cross sections were analyzed. In all four strains, 

similar ultrastructural defects were observed (Fig. 6). Most 

 notably, the C2b projection and parts of the C2c projection of the 

C2 microtubule were missing from almost all 9 + 2 axonemes 

(�90%; n = 34 for strain hyS2 and 14 for hyN4) of the hydin 

RNAi strains (Fig. 6, B and H). Image averages generated from 

digitized images clearly revealed the differences in the CP 

apparatus of 9 + 2 axonemes of wild-type and HY3 RNAi cells 

(Fig. 6, I–L). In 5–12% of the cross sections, one CP micro-

tubule was missing; an additional 3–5% of cross sections lacked 

both CP microtubules, which were replaced by a core of amor-

phous material similar to that described in other mutants lacking 

the CP (Fig. 6, C and D; Witman et al., 1972, 1978; Adams 

et al., 1981). Finally, �2% of the cross-sectioned axonemes 

lacked one to four B-tubules or up to three entire doublet micro-

tubules (Fig. 6, E and F).

Previous ultrastructural analysis of KLP1-depleted axo-

nemes suggested that KLP1 is a component of the C2c projec-

tion (Yokoyama et al., 2004). A part of this projection was largely 

missing in the axonemes of hydin RNAi cells, raising the ques-

tion of whether hydin depletion affected the presence of KLP1 

and other known CP proteins. Western blotting showed no dif-

ference in the amounts of the C1 proteins PF6, FAP101 (Wargo 

et al., 2005), or CPC1 in axonemes isolated from wild-type or 

hydin RNAi cells (Fig. 7 A). In contrast, probing with anti-KLP1 

(Bernstein et al., 1994) showed that KLP1 was strongly reduced 

in the hydin RNAi axonemes. These data indicate that localiza-

tion of KLP1 to the C2 tubule depends on hydin.

Figure 6. Flagella of HY3 RNAi cells lack the C2b projection and part of 
the C2c projection. (A–H) Axonemal cross sections of wild type (A and G; 
CC3395) and the HY3 RNAi strains hyN4 (B, D, and H), hyN3 (C), and 
hyD2 (E and F). (G and H) Detail from A and B, respectively. (I and J) 
Image averages based on six wild-type (I) and six hyN4 images (J). (K and L) 
Schematic representations of the CP apparatus of wild type (K) and HY3 
RNAi cells (L). Similar defects were observed in all four hydin RNAi strains 
analyzed by EM. In H, J, and L, the defects in the CP of the hydin RNAi 
cells are marked with arrowheads (absence of projection C2b) and arrows 
(absence of density of C2c). Arrowheads in E point out defective and 
 missing doublets; note the presence of dynein arms on some of the singlet 
 microtubules in E. Black dots indicate doublet No. 1 lacking the outer dynein 
arm. Bar, 0.1 μm.

Table I. Flagellar position in paralyzed cells of hydin RNAi and other 
CP mutant strains

Strain Both up One up and 
one down

Both down

% % %

hyN3 (n = 103) 14 56 30

hyS1 (n = 199) 27 47 26

pf15a (n = 108) 97 2 1

pf18 (n = 131) 95 5 —

pf16 (n = 143) 98 2 —

pf19 (n = 76) 100 — —

The data are based on living cells observed by DIC or phase contrast. Only cells 
in which both fl agella were visible were scored.
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Hydin interacts with the CPC1 complex
To obtain biochemical evidence for the location of hydin within 

the CP, we took advantage of the fact that the C2 microtubule 

can be selectively depolymerized by extraction of axonemes 

with high salt, e.g., 0.6 M KCl (Mitchell and Sale, 1999). These 

conditions solubilized most of the KLP1 and the outer dynein 

arm intermediate chain IC2 (Fig. 7 B, lane KCl-S), whereas 

most of the hydin and the C1 proteins PF6 and CPC1 stayed in 

the insoluble fraction (lane KCl-P), in good agreement with 

data from the proteomic study of C. reinhardtii fl agella (Pazour 

et al., 2005).

This result, indicating that hydin is associated with the C1 

microtubule when the C2 microtubule is solubilized, was sur-

prising given the effect of hydin depletion on the C2b and C2c 

projections, as well as on the C2 protein KLP1, and the immuno-

gold localization of hydin to the C2 microtubule. However, 

 ultrastructural analysis has shown that the C1b and C2b projec-

tions physically interact and has revealed that axonemes  isolated 

from the mutant cpc1, which lack the C1b projection, also 

 frequently lack the C2b projection (Mitchell and Sale, 1999). 

Therefore, if hydin is a component of the C2b projection, one 

would predict that hydin would be missing or destabilized in 

the cpc1 mutant. To test this, fl agella were isolated from cpc1 

and wild-type cells, and the detergent-soluble membrane-plus-

 matrix fraction, axonemes, and KCl-extracted axonemes were 

compared by Western blotting (Fig. 7 C). As shown above, 

 hydin fractionated with the axonemes in wild-type cells and still 

remained with the axonemes after high-salt extraction. In con-

trast, in cpc1, some of the hydin was released into the detergent-

soluble membrane-plus-matrix fraction, and little remained in 

the axonemes after high-salt extraction. The majority of PF6, 

a component of the C1a projection, remained attached to the 

wild-type and cpc1 axonemes after high-salt extraction. These 

data show that hydin interacts with the CPC1 complex of the C1 

microtubule. Fig. 7 D shows a model for the location of hydin 

within the CP that is consistent with the immunolocalization, 

ultrastructural, and biochemical data.

Discussion
In this study, we analyzed the location and function of hydin in 

the fl agella of C. reinhardtii. An antibody raised against a poly-

peptide encoded by exon 3 of C. reinhardtii HY3 decorated the 

CP in immunofl uorescence microscopy and immunogold EM. 

Western blotting and immunofl uorescence microscopy using 

anti-hydin revealed that hydin was strongly reduced in axo-

nemes of pf15a and pf18, two mutants that lack the CP apparatus. 

In strains depleted of hydin by RNAi, EM revealed defects 

in the CP ranging from the absence of individual CP projections 

to loss of the entire CP apparatus. Hydin knockdown resulted in 

paralyzed fl agella, a phenotype characteristic of radial spoke 

and CP mutants of C. reinhardtii. Biochemical studies showed 

that KLP1, another CP protein, was dependent on hydin for as-

sembly into the axoneme. In summary, evidence from several 

independent experimental approaches all indicate that hydin is 

a CP protein required for fl agellar motility.

Hydin is a component of the C2b projection
In whole mounts labeled with anti-hydin, the majority of the 

gold particles was located on the C2 microtubule. Ultrastruc-

tural analysis of C. reinhardtii HY3 RNAi cells revealed that 

 almost all fl agella lacked the C2b projection on the C2 micro-

tubule, strongly suggesting that hydin is a component of this 

 projection. Previously, it was shown that the C2b and C1b projec-

tions physically interact, and that the stability of the C2b projec-

tion is partly dependent on the C1b projection (Mitchell and Sale, 

1999). Based on these observations, our model (Fig. 7 D) would 

predict that the stability of hydin, in the C2b projection, would 

depend in part on the C1b projection. Indeed, we found that 

much of the hydin could be eluted from cpc1 axonemes, which 

lack the C1b projection, but not from wild-type axonemes, by 

dissolving the C2 microtubule using 0.6 M KCl. We propose 

that hydin is a core component of the C2b projection but also is 

anchored to the C1 microtubule via the C1b projection and the 

CPC1 complex.

Figure 7. Hydin interacts with KLP1 and the CPC1 complex. 
(A) Western blots of isolated axonemes from wild-type, 
hyN3, and hyN4 probed with antibodies to the CP 
 proteins hydin, PF6, FAP101, CPC1, and KLP1. Antibod-
ies to α-tubulin and IC2 were used as loading controls. 
Both hydin and KLP1 were signifi cantly reduced in the 
 axonemes of hydin RNAi cells. (B) Western blot comparing 
the amounts of hydin, PF6, CPC1, KLP1, IC2, and IFT139 
in the detergent-soluble fl agellar membrane-plus-matrix 
fraction (M&M), axonemes (Ax), residual axonemes after 
0.6 M KCl extraction (KCl-P), and the KCl extract of 
 axonemes (KCl-S). Protein from equivalent numbers of fl ag-
ella were loaded for each sample. (C) Western blot 
comparing the solubility of hydin, PF6, CPC1, and KLP1 
in wild-type and cpc1 fl agella. Protein from equal num-
bers of fl agella was loaded for each sample. (D) Sche-
matic representation of the CP apparatus. In this model, 
hydin is an essential component of the C2b projection. It 
extends to the C2a projection, where it stabilizes the as-
sociation of KLP1 with the C2 microtubule, and extends in 
the other direction to interact with the CPC1 complex of 
the C1 microtubule.
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Hydin knockdown cells also lack an element of the C2c 

projection. The latter is probably constituted at least in part by 

KLP1, because KLP1 has been localized to the C2 microtubule 

(Bernstein et al., 1994) and the ablation of KLP1 by RNAi re-

sults in the loss of parts of projection C2c (Yokoyama et al., 

2004). In many KLP1 RNAi axonemes, the position of projec-

tion C2b was shifted, suggesting that its attachment to the C2 

microtubule was destabilized. We propose that hydin also inter-

acts with the C2c protein KLP1 and that this interaction is im-

portant for the stability of both the C2b and C2c projections. 

Consistent with this, we found that the amount of KLP1 is strik-

ingly reduced in isolated axonemes of hydin-depleted cells, 

indicating that hydin anchors KLP1 to the C2 microtubule. 

 Anchorage of KLP1 to hydin on C2 would explain the observa-

tion that isolated KLP1 binds tightly to microtubules in the 

presence of AMPPNP and is released by ATP, but cannot be 

 extracted from axonemes by ATP (Yokoyama et al., 2004).

It should be noted that our model, in which hydin partially 

circumscribes the CP apparatus by stretching from the C1b pro-

jection to the C2c projection, would allow “cross talk” between 

projections in different halves of the CP apparatus, thereby 

 potentially coordinating regulation of dynein arms in both halves 

of the axoneme (see below).

Hydin shares a proposed microtubule-
binding domain with other axonemal 
and CP proteins
Functional domains of hydin are unknown, but a recent in silico 

analysis identifi ed four ASH (ASPM, SPD-2, Hydin) domains 

(Ponting, 2006). ASH domains were found in several centro-

somal and fl agellar proteins, including abnormal spindle-like 

microcephaly-associated protein (ASPM), C. reinhardtii PF6, 

and several human orthologues of proteins identifi ed in the 

C. reinhardtii fl agellar proteome. The ASH domain consists of 

eight β-strands and is proposed to be involved in microtubule 

binding. Consistent with this, four of fi ve ASH family members 

identifi ed in the proteomic analysis of C. reinhardtii fl agella 

(Pazour et al., 2005) are tightly bound to the axoneme. Thus, the 

ASH domain of hydin may mediate its attachment to the C2 

 microtubule. Interestingly, the two characterized ASH family 

members (hydin and PF6) in the fl agellar proteome are CP pro-

teins, raising the possibility that within the fl agellum the ASH 

domain targets proteins to the CP.

Hydin RNAi cells reveal a possible 
role for hydin in switching activity
C. reinhardtii mutants completely lacking the CP complex or 

the radial spokes are generally paralyzed, although their dynein 

arms are capable of generating interdoublet sliding after treat-

ment of the isolated axonemes with trypsin (Witman et al., 

1978). Moreover, axonemes of these mutants can be reactivated 

at low ATP concentrations in vitro (Omoto et al., 1999), and 

 extragenic suppressors, some of which involve dynein arm 

components, can restore some motility in the absence of the 

missing structures. These observations indicate that the CP and 

radial spokes are involved in the regulation of the dynein arms 

(Smith and Yang, 2004). The phenotype of mutants lacking one 

of the CP projections is more variable: pf6 mutants (lacking the 

C1a projection) “twitch in place as a result of fl agella that beat 

slowly with a slightly abnormal waveform” (Rupp et al., 2001), 

cpc1 mutants (lacking projection C1b) swim slowly and their 

fl agella beat at a reduced frequency with normal waveform 

(Mitchell and Sale, 1999), and KLP1 RNAi cells (lacking parts 

of C2c) have either paralyzed fl agella or a reduced fl agellar beat 

frequency (Yokoyama et al., 2004). Paralysis and low-beat fre-

quency residual movements also were characteristic of fl agella 

of our HY3 RNAi cells. However, the HY3 RNAi cells were 

unique among known CP mutants in that the two fl agella rested 

in different positions (one “hands up” and one “hands down”) in 

�50% of the cells analyzed. We observed almost equal num-

bers of cis and trans fl agella in the hands-up position, and �25% 

of cells with both fl agella in either the hands-up or hands-down 

position, indicating that the position of arrest (hands up or hands 

down) was random and did not correlate with whether the 

 fl agellum was cis or trans relative to the eyespot (Kamiya and 

 Witman, 1984). The fl agella arrested in the hands-up position 

are at the end of their recovery stroke/beginning of their effective 

stroke, whereas those arrested in the hands-down position are at 

the end of their effective stroke/beginning of their recovery 

stroke. These positions correspond to the two switch points in 

the C. reinhardtii fl agellar beat cycle, when the dynein arms in 

one half of the axoneme are turned off and the arms in the op-

posite half of the axoneme are turned on (Satir and Matsuoka, 

1989). Based on the association of the CP with groups of dou-

blet microtubules from split axonemes, where the activity state 

of the arms could be deduced, it has been proposed that a radial 

spoke–CP attachment cycle is involved in turning the arms on 

and off at these switch points (Satir and Matsuoka, 1989). The 

unique behavior of the hydin knockdown fl agella indicates that 

hydin may have an important role in this switching function. 

It has been proposed that KLP1 acts “as a conformational 

switch to signal spoke-dependent control of dynein activity” 

(Yokoyama et al., 2004). Inasmuch as KLP1 appears to interact 

with hydin, it is tempting to speculate that KLP1 motor activity 

generates a conformational change in hydin, resulting in altered 

contact with the radial spokes and thereby transmitting a signal 

to the dynein arms.

Hydin RNAi results in short fl agella
C. reinhardtii cells partially depleted of hydin by RNAi often 

had short or stumpy fl agella, which has been not reported for 

other CP mutants of C. reinhardtii. However, sperm of mice de-

fi cient in Spag6, which has been localized to the CP apparatus 

and is an orthologue of the C. reinhardtii CP component PF16, 

frequently had an altered morphology, including truncation 

of the tail, loss of CP microtubules, and abnormal outer dense 

 fi bers and fi brous sheath (Sapiro et al., 2002). Mutations of Kpl2 

protein, a homologue of the C. reinhardtii CP protein CPC1, 

cause the immotile short-tail sperm (ISTS) defect of Yorkshire 

boars (Sironen et al., 2006). ISTS is characterized by shorter 

sperm fl agella, often lacking one or two CP microtubules, and 

displaying ultrastructural defects of the outer doublets, such as 

defective B-tubules or the absence of entire doublets (Andersson 

et al., 2000). It is currently unknown why mutation of certain 
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CP proteins can result in truncation of fl agella. About 2% of the 

fl agella from hydin RNAi cells had defects in the outer doublet 

microtubules in addition to the much more frequent loss of 

CP projections. Examination of both cross sections and longi-

tu dinal sections of the fl agella indicate that the outer doublet 

abnormalities are localized to the fl agellar tip. Therefore, certain 

defects in the CP may affect some aspect of axonemal assembly 

or turnover, which occur at the tip.

Defects in Hydin likely cause hydrocephalus 
through a mechanism involving cilia
Mice homozygous for mutations in Hydin develop hydrocephalus 

(Davy and Robinson, 2003). Hydrocephalus is thought to be 

caused either by overproduction or insuffi cient absorption of 

CSF or by insuffi cient transport of fl uid between the ventricles 

of the brain. The latter could be caused by defects in motile 

cilia present on the surfaces of the ventricles and aqueducts. The 

movement of these cilia causes an ependymal fl ow necessary to 

maintain open cerebral aqueducts (Ibanez-Tallon et al., 2004; 

Banizs et al., 2005). Indeed, mice with mutations in several 

other genes encoding fl agellar proteins develop hydrocephalus. 

These include Tg737orpk mutant mice, which exhibit multiple 

cilia-related defects, including cystic kidney disease (Moyer 

et al., 1994). Tg737 encodes Polaris/IFT88, a conserved protein 

required for the assembly of primary and motile cilia (Pazour 

et al., 2000). In Tg737orpk mutant mice, ependymal cilia are se-

verely malformed, leading to disorganized beating and impaired 

movement of CSF (Banizs et al., 2005). Mice with primary cili-

ary dyskinesia caused by dysfunctional Mdnah5, an axonemal 

outer arm dynein heavy chain, develop hydrocephalus at early 

postnatal ages (Ibanez-Tallon et al., 2002). 50% of mice lacking 

the CP protein Spag6 develop lethal hydrocephalus within 8 wk 

of birth (Sapiro et al., 2002). Finally, loss of cilia because of 

mutation of the mouse hepatocyte nuclear factor/forkhead 

 homologue 4 gene results in abnormalities in organ situs and, in 

some cases, hydrocephalus (Chen et al., 1998). In summary, 

cilia function is important for the CSF ventricular system, and 

at least certain forms of hydrocephalus belong to the cilio-

pathies, an emerging class of human genetic disorder (Zariwala 

et al., 2006).

In an earlier study, the role of cilia in the pathogenesis of 

hydrocephalus in the hy3 mouse was questioned. Scanning EM 

studies of hy3 mice found that the cilia were lost, but only from 

the ependymal surfaces that were most affected by the raised 

intraventricular pressure. Moreover, the development of hydro-

cephalus seemed to precede the loss of cilia. It was concluded 

that these ciliary defects are “most probably the result of the 

hydrocephalus, and not its cause” (Bannister and Chapman, 

1980). However, based on our fi nding that hydin is a CP protein 

necessary for fl agellar motility in C. reinhardtii, we postulate 

that hydrocephalus caused by mutations in Hydin involves de-

fects in the CP apparatus, resulting in impaired ciliary motility 

and probably subsequent ciliary degeneration.

The literature also strongly suggests a connection between 

ciliary defects and hydrocephalus in humans (Kosaki et al., 

2004; for reviews see Ibanez-Tallon et al., 2003; Afzelius, 

2004). For example, in humans with mutations in the axonemal 

dynein heavy chain DNAH5, the incidence of hydrocephalus is 

83 times higher than that in the general population (Ibanez-

 Tallon et al., 2004), although not all patients with ciliary defects 

develop hydrocephalus. At least one case of human hydro-

cephalus has been mapped to within 1.2 Mb of HYDIN in human 

chromosome band 16q22.2 (Callen et al., 1990). This, together 

with the clear connection between mutations in Hydin and 

 hydrocephalus in the mouse, make HYDIN a strong candidate for 

causing hydrocephalus in humans. Our fi ndings indicate that, if 

hydrocephalus is indeed caused by mutations in HYDIN, then 

these patients probably develop the disease as a result of defects 

in the CP of the ependymal cilia.

Materials and methods
Strains and culture conditions
C. reinhardtii strains used in the work include CC3395 (arg7-8, cwd, 
mt−), CC124 (agg1, nit1, nit2, mt−), and cpc1-1 (CC-3706; arg7, mt+), 
all from the Chlamydomonas Genetics Center. pf15a was obtained from 
R.P. Levine (Harvard University, Cambridge, MA), whereas pf16, pf18, 
pf19, and pf20 were R. Lewin isolates originally obtained from the Culture 
Collection of Algae and Protozoa (Cambridge, UK); all have been main-
tained in this laboratory since 1974. Cells were grown in M medium I with 
2.2 mM KH2PO4 and 1.71 mM K2HPO4 (Sager and Granick, 1953) or 
TAP (Gorman and Levine, 1965) at 23°C with aeration and a light/dark-
cycle of 14/10 h (Witman, 1986), or shaken in constant light.

Antibody production
A 1.3-kb fragment (fragment A) corresponding to exon 3 of HY3 in the 
U.S. Department of Energy’s Joint Genome Institute’s C. reinhardtii genome 
v. 2 was amplifi ed by PCR from genomic DNA of CC3395 using primer pair 
hyf2a and hyr2a (see Tables S1 and S2, available at http://www.jcb.org/cgi/
content/full/jcb.200611115/DC1, for primers and PCR conditions). The 
PCR product was digested with HindIII and BamHI and ligated into pMAL-
cR1 v. 2 digested with the same enzymes (New England Biolabs, Inc.). The 
construct was transformed into E. coli XL1 blue, and, for expression of 
the maltose-binding::hydin fusion protein, into BL21. The fusion protein 
was purifi ed by amylose affi nity chromatography, and antibodies were 
 produced in rabbits (CRP, Inc.) using the company’s standard protocol. 
Fragment A was digested with BamHI and SalI and ligated into pGEX-6P-1 
(GE Healthcare) restricted with the same enzymes. After transformation 
into E. coli XL1blue, the GST::hydin-fusion protein was purifi ed by affi nity 
chromatography, subjected to SDS-PAGE (7.5%), transferred onto poly-
vinylidene difl uoride membrane, stained with Ponceau S, and excised from 
the membrane using a razor blade. The immobilized fusion protein was 
used for affi nity purifi cation of anti-hydin from bleeds 1, 2, and 4.

RNAi construct and transformation
We constructed a novel expression vector based on the C. reinhardtii LC8 
gene; this is an intronless gene that encodes the dynein light chain LC8 and 
is inducible by defl agellation. The upstream region of LC8, including the 
fi rst and second codon, was amplifi ed from genomic DNA by PCR using 
primers LC8f1-3 and LC8r1-2 and GoTaq Flexi DNA polymerase (Pro-
mega). The downstream region of LC8 was amplifi ed using primers 
LC8r2_2 and LC8f1-3, and the products were restricted with HindIII–BamHI 
and BamHI–EcoRI, respectively. Both products were then ligated into 
pUC119 digested with HindIII and EcoRI. The resulting plasmid (pLC8S) 
was digested with BamHI, and a triple HA tag, amplifi ed from p3xHA 
 (Silfl ow et al., 2001) using primers HAf2tm68 and Har2 and restricted with 
BamHI and BglII, was inserted, resulting in plasmid pKL3. Fragment S cov-
ering the fi rst three exons and introns of HY3 was amplifi ed by PCR using 
primers hyf1s and hyr1s. Fragments A (see above) and S were restricted 
with BamHI–HindIII and HindIII–XbaI, respectively, and ligated into pKL3 
digested with NheI and BamHI. The resulting plasmid, pKL3-hyAS, was 
 linearized with EcoRI or DraI. Cotransformation was performed using the 
glass bead method (Kindle, 1990) and ARG7 as a selectable marker.

Preparation of axonemes and CP extrusion
Flagella were isolated from C. reinhardtii as described previously by 
Witman (1986). For Western blot analysis, fl agella were extracted with 
1% NP-40 for 5 min on ice, axonemes were collected by centrifugation 
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(30,000 g, 20 min, 4°C), and the detergent-soluble membrane-plus-
 matrix and axoneme fractions were prepared for SDS-PAGE. For further 
fractionation, axonemes were extracted with 0.6 M KCl for 30 min on 
ice, pelleted, and extracted with 0.5 M KI for 20 min on ice. Extrusion of 
the CP was induced as previously described (Kamiya, 1982; Hosokawa 
and Miki-Noumura, 1987) with the following modifi cations: ATP (1 mM 
fi nal concentration) and trypsin (5 μg/ml fi nal concentration; Invitrogen) 
were added to isolated fl agella in HMDEK-PEG (30 mM Hepes, 5 mM 
MgSO4, 1 mM DTT, 0.5 mM EGTA, 25 mM KCl, and 0.5% PEG 20,000) 
at room temperature. Flagella were then demembranated by addition of 
1% Nonidet NP-40 (Calbiochem). After 2 min, aliquots were fi xed with 
formaldehyde (2% fi nal concentration), allowed to settle onto poly-L-
 lysine–coated multiwell slides for 2–8 min, and submerged into −20°C 
methanol for 6–10 min. For complete extrusion of CP microtubules, more 
ATP (1 mM) was added 2 and 4 min after fl agellar demembranation, 
and samples were processed as described after a total of 6 min of in-
cubation. Methanol-fi xed specimens were processed for immunofl uores-
cence microscopy.

RNA and DNA isolation
DNA was isolated from C. reinhardtii using PlantDNAzol reagent (Invitro-
gen) following the instructions of the manufacturer. TRIzol LS reagent 
(In vitrogen) was used for RNA isolation, and cDNA synthesis was performed 
using PowerScript Reverse Transcriptase (CLONTECH Laboratories, Inc.) 
using the manufacturer’s protocol, except that cDNA synthesis was per-
formed for 50 min at 42°C, 20 min at 48°C, and 20 min at 55°C. The rela-
tive amount of cDNA representing HY3 message in samples was determined 
by real-time PCR using primers C_410060F and C_410060R that spanned 
intron 4; QuantiTect SYBR green PCR master mix (QIAGEN) was used to 
monitor amplifi cation. The relative amount of the G protein β subunit 
(Schloss, 1990), which is constantly expressed under various conditions, 
was measured in each trial and used to correct for slight differences in 
amount of cDNA in each sample. Up to three independent sets of RNA 
were isolated and analyzed.

Electron and immunofl uorescence microscopy
Cells were fi xed in glutaraldehyde for EM (Hoops and Witman, 1983) and 
processed as described previously (Wilkerson et al., 1995). For whole 
mount immunogold EM, CPs were extruded as described above but omit-
ting trypsin. After 22–40 min, the suspension was applied to carbon/ 
formvar-coated grids and fi xed with 2.5–3% formaldehyde. Immunostaining 
was performed as described by Bernstein et al. (1994), and specimens 
were analyzed using electron microscopes (CM10 or -12; Philips). Cells 
were fi xed and stained for immunofl uorescence microscopy as described 
by Lechtreck and Geimer (2000) with the following modifi cations: 1% 
polyethylenimine was used to immobilize strains with a cell wall, and pri-
mary antibodies were applied overnight at 4°C. See Table S3, available 
at http://www.jcb.org/cgi/content/full/jcb.200611115/DC1, for anti-
bodies and dilutions used in this study. After washing, specimens were 
mounted with ProLong Gold (Invitrogen). Images were acquired at room 
temperature using AxioVision software and a camera (AxioCam MRm) on 
a microscope (Axioskop 2 Plus) equipped with a 100×/1.4 oil differential 
interference contrast (DIC) Plan-Apochromat objective (Carl Zeiss Micro-
imaging, Inc.) and epifl uorescence. Image brightness and contrast were 
adjusted using Photoshop 5.0 and 6.0 (Adobe). Figures for publication 
were assembled using Illustrator 8.0 (Adobe). Capture times and adjust-
ments were similar for images mounted together. Averaged images were 
prepared in Photoshop by setting the original images to 16% opacity and 
aligning them manually.

Online supplemental material
Fig. S1 shows the induction of hydin transcripts after defl agellation, provid-
ing additional evidence that hydin is a fl agellar protein. Video 1 shows 
a C. reinhardtii hydin RNAi cell of strain hyN3 in which the fl agellum 
in the hands-up position beats more frequently than the other fl agellum. 
Video 2 shows a hydin RNAi cell of strain hyN4 with the more active 
fl agellum in the hands-up position and the other in the hands-down 
position. Video 3 shows a hydin RNAi cell of strain hyS1, in which the 
more active fl agellum rests mostly in the hands-up position and the other 
fl agellum in the hands-down position. Tables S1, S2, and S3 show 
PCR primers, PCR conditions, and antibodies, respectively, used in this 
work. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200611115/DC1.
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