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Abstract  45 

Rationale: The major human genes regulating M. tuberculosis (Mtb)-induced immune 46 

responses and tuberculosis (TB) susceptibility are poorly understood. Although IL-12 47 

and IL-10 are critical for TB pathogenesis, the genetic factors that regulate their 48 

expression are unknown. CNBP, REL, and BHLHE40 are master regulators of IL-12 and IL-49 

10 signaling. 50 

Objectives: To determine whether common human genetic variation in CNBP, REL and 51 

BHLHE40 is associated with IL-12 and IL-10 expression, adaptive immune responses to 52 

mycobacteria, and susceptibility to TB. 53 

Methods and Main Measurements: We characterized the association between common 54 

variants in CNBP, REL, and BHLHE40 and innate immune responses in dendritic cells and 55 

monocyte-derived macrophages (MDM), BCG-specific T cell responses, and 56 

susceptibility to pediatric and adult TB. 57 

Results: SNP BHLHE40 rs4496464 was associated with increased BHLHE40 expression in 58 

MDMs and increased IL-10 from both peripheral blood dendritic cells and MDMs after 59 

LPS and TB whole cell lysate stimulation. SNP BHLHE40 rs11130215, in linkage 60 

disequilibrium with rs4496464, was associated with increased BCG-specific IL2+CD4+ T 61 

cell responses and decreased risk for pediatric TB in South Africa. SNPs REL rs842634 62 

and CNBP rs11709852 were associated with increased IL-12 production from dendritic 63 
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cells, and SNP REL rs842618, in linkage disequilibrium with rs842634, was associated 64 

with increased risk for TB meningitis. 65 

Conclusions: Genetic variation in CNBP, REL, and BHLHE40 is associated with IL-12 and 66 

IL-10 cytokine response and TB clinical outcomes. Common human genetic regulation of 67 

well-defined intermediate cellular traits provides insights into mechanisms of TB 68 

pathogenesis. 69 

Abstract Word Count: 240 70 

Keywords: CNBP, REL, BHLHE40, dendritic cells, genetics, M. tuberculosis 71 
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Introduction 72 

 Tuberculosis (TB) is a leading cause of death from infection worldwide. The 73 

current BCG vaccine remains the only approved vaccine against TB despite its partial 74 

and variable effects across populations (1). Vaccine efforts are hampered by a lack of 75 

understanding of the immune correlates of protection (2). Understanding the factors 76 

required to induce effective, long lasting immunity to infections may provide tools to 77 

improve TB vaccines.  78 

 79 

 Twin, Mendelian, linkage, genome-wide association, and candidate gene studies 80 

suggest that genetic factors influence susceptibility to TB (3, 4). Multiple clinical TB 81 

phenotypes show a high degree of heritability, including host susceptibility to 82 

pulmonary TB (5-10), TB meningitis (11, 12), and latent TB infection (13-17). However, 83 

the major genes regulating TB susceptibility have not yet been identified with consistent 84 

results across multiple populations, possibly due to heterogeneous clinical phenotypes 85 

and lack of mechanistic correlation of genetic variants with immunophenotypes (3).  To 86 

overcome these obstacles, we evaluated LPS and Mtb whole cell lysate (TBWCL)-induced 87 

cytokine responses from immune cells, followed by clinical correlation, to improve the 88 

power and mechanistic insight of genetic studies.  89 

 90 
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Common genetic variation influences the cellular innate immune response to 91 

Mycobacterium tuberculosis (Mtb). Multiple studies demonstrate the impact of genetic 92 

variation on innate immune cellular distribution and cytokine responses (18-21). 93 

Quantitative trait loci (QTL) of gene expression demonstrate immune cell-specific effects 94 

(22). Recent advances permit the evaluation of innate immune cytokine responses from 95 

rare cell populations (23, 24).  Variants that influence functional responses in immune 96 

cells of interest represent attractive secondary traits which can be correlated with TB 97 

susceptibility and these correlations may provide insight into genetic mechanisms of 98 

disease susceptibility (25). 99 

 100 

Dendritic cells (DCs) present antigen to T cells via MHC Class I and II, co-stimulate 101 

them with CD40 and CD80, and influence T cell differentiation by producing cytokines 102 

like IL-12p70, IL-10, and IL-23, to induce T cell differentiation (26). DCs are essential for 103 

mycobacterial immunity (15, 27) and common genetic variants that influence DC 104 

migration are also associated with TB susceptibility (7).  IL-10 and IL-12 are particularly 105 

important for T cell function in Mtb infection. Individuals with Mendelian deficiencies in 106 

IL-12 signaling rapidly develop serious, disseminated mycobacterial infections (28, 29). 107 

However, the effect of common genetic variation on physiologic levels of IL-10 and IL-108 

12, and the influence of these cytokines on BCG-specific T cell responses and TB 109 

outcomes in humans is not known.  After inflammatory stimulation, the transcription 110 
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factor CNBP and its binding partner c-REL translocate to the nucleus and induce IL12B 111 

transcription, which encodes the IL-12p35 protein subunit (30, 31). Likewise, IL-10 112 

production influences Mtb immune responses, as it diminishes T cell activation, 113 

enhances regulatory T cell activity, and may be responsible for delayed T cell priming 114 

observed in the initial Mtb immune response (32, 33). In mice, the transcription factor 115 

BHLHE40 controls IL-10 production from both myeloid and lymphoid cells, with 116 

contribution from CNBP (30, 31, 34). The role of these genes and their genetic variants in 117 

human regulation of T cell responses is unknown. In this study, we investigated whether 118 

common human genetic variation in the transcription factors CNBP, REL, and BHLHE40 119 

were associated with DC cytokine responses, BCG-specific T cell responses and TB 120 

susceptibility. 121 

 122 

Materials and Methods 123 

Ethics Statement 124 

Approval for human study protocols was obtained from the institutional review boards 125 

at local sites and at the University of Washington School of Medicine (Seattle, WA). The 126 

South African study included written informed consent from the parent or legal 127 

guardian of the participant and approval by the University of Cape Town Research Ethics 128 

Committee. Written informed consent was received from all participants before 129 

inclusion in the study. For genetic studies in Vietnam, approval for human study 130 
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protocols was obtained from the human subjects review boards at the University of 131 

Washington School of Medicine, the Hospital for Tropical Diseases, Pham Ngoc Thach 132 

Hospital, Hung Vuong Hospital, and the Oxford Tropical Research Ethics Committee. 133 

Written informed consent was obtained from patients or their relatives if the patient 134 

could not provide consent. 135 

 136 

Study Participants 137 

Study participants in the Seattle cohort were volunteers self-described as healthy 138 

without history of recurrent serious infections. 52% of individuals were female, and 48% 139 

were male. The ethnic composition of this study group was 69% White, 19% Asian, 2% 140 

Black or African American, and 2% Latinx. Average age of study participants was 39, with 141 

interquartile range of 29 – 46 at the time of their enrollment.  142 

  143 

South African study participants were enrolled at the South African Tuberculosis 144 

Vaccine Initiative field site in Worcester, South Africa, near Cape Town as part of a larger 145 

study on BCG vaccination with 11,680 infants (35, 36). This area has one of the highest 146 

rates of TB in the world with an incidence of 3% among children less than 3 years of age 147 

in the study population (35, 36). A nested genetics case-control study was performed 148 

with identification of cases and controls during a 2-year prospective observation period 149 
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after vaccination at birth. The criteria for detection of TB cases have been described 150 

previously and are summarized in the online supplement (37).  151 

 152 

Study subjects from the Vietnam cohort were described previously and are 153 

summarized here and in detail in the online supplement (12). Subjects with tuberculous 154 

meningitis were recruited from two centers in Ho Chi Minh City, Vietnam: Pham Ngoc 155 

Thach (PNT) Hospital for Tuberculosis and the Hospital for Tropical Diseases (HTD). 156 

Subjects with pulmonary TB were recruited from a network of district TB control units 157 

within Ho Chi Minh City that provide directly observed therapy to TB patients. In 158 

addition, pulmonary TB subjects enrolled were recruited from PNT hospital from 2006 159 

through 2008. Vietnamese population controls were otherwise healthy adults with 160 

primary angle closure glaucoma which have been previously described (38). All case and 161 

control participants were unrelated and greater than 95% were of the Vietnamese Kinh 162 

ethnicity. Previous genetic studies of this population indicate minimal population 163 

substructure (12, 39).  164 

 165 

All statistical analyses are described in the online supplement and were 166 

performed using Stata 14.1 and Prism 8.0 software. The remainder of all experimental 167 

procedures are described in detail in the online supplement. 168 

 169 
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Results 170 

Single cell analysis of cytokine production in peripheral blood DCs   171 

To evaluate genetic regulation of IL-10 and IL-12 production from healthy human 172 

donors, we used flow cytometry to measure the proportion of peripheral blood MHC-173 

II+CD11c+ DCs producing IL-10 and IL-12 after stimulation of whole blood with LPS or 174 

TB whole cell lysate (TBWCL; Figure 1A). LPS (10 ng/ml) and TBWCL (50 µg/ml) both 175 

strongly induced IL-12 (Figure 1B) and IL-10 (Figure 1C) from DCs 24 hours after 176 

stimulation. We also measured cytokine responses to LPS (10 ng/ml) and live BCG (106 177 

CFU/ml) 6 hours after stimulation (Figure 1D). We found that LPS and BCG induced IL-178 

12 6 hours after stimulation in CD11c+ DCs.  However, we did not detect IL-10 above 179 

background levels from DCs after 6 hours of stimulation (data not shown). 180 

 181 

Discovery analysis of genetic associations with IL-12 responses to LPS and TBWCL. 182 

 We next examined whether candidate gene variants were associated with LPS or 183 

TB whole cell lysate- (TBWCL) induced IL-12 in DCs.  We interrogated 4 haplotype-184 

tagging SNPs from CNBP, 6 from REL, and 19 from BHLHE40 in a local cohort of healthy 185 

volunteers (Figure E1). REL SNP rs842634 was associated with increased IL-12 after 186 

TBWCL and LPS stimulation (Figure 2A; p = 0.044, generalized linear model (GLM), 187 

Figure 2B; p = 0.037). CNBP SNP rs11709852 was associated with increased IL-12 188 
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production after TBWCL stimulation, but not LPS stimulation (Figure 2C; p = 0.003; 189 

Figure 2D, p = 0.48). No SNPs from BHLHE40 were associated with IL-12 (Table E2). 190 

 191 

CNBP and REL variants are associated with LPS and BCG-induced IL-12 secretion after 6 192 

hour stimulation in an independent dataset. 193 

 We evaluated the association of our candidate SNPs in a second, independent 194 

cohort with whole blood stimulated with BCG (106 CFU/ml) or LPS (10 ng/ml) for 6 195 

hours, followed by measurement of cytokine responses, as described above. REL SNP 196 

rs842634 was associated with increased IL-12 after BCG infection (Figure 3A; p = 0.046, 197 

generalized linear model) and LPS stimulation (Figure 3B; p = 0.024). CNBP SNP 198 

rs11709852 was associated with a trend toward increased IL-12 after BCG stimulation 199 

(Figure 3C; p = 0.078, Mann-Whitney U-test), and was also associated with increased IL-200 

12 after LPS stimulation early in infection Figure 3D; p = 0.014, Mann-Whitney test).  201 

 202 

BHLHE40 SNP rs4496464 is associated with IL-10 secretion from DCs 203 

 Next, we evaluated for associations between genetic variants in CNBP, REL, and 204 

BHLHE40 with IL-10 production from DCs. BHLHE40 SNP rs4496464 was associated with 205 

increased IL-10 production after TBWCL stimulation (Figure 4A; p = 0.005, generalized 206 

linear model). In contrast, rs4496464 was not associated with IL-10 after LPS stimulation 207 

(Figure 4B, p = 0.18). No CNBP or REL SNPs, including rs11709852 and rs842634, were 208 
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associated with IL-10 expression after TBWCL or LPS stimulation. (Figure 4C – F). 209 

BHLHE40 SNP rs4496464 was not associated with IL-12 expression after stimulation with 210 

either TBWCL or LPS (Figure 4G and Figure 4H). 211 

 212 

Rs4496464 is associated with BHLHE40 mRNA expression in monocyte-derived 213 

macrophages 214 

 We evaluated whether rs4496464 genotypes were associated with BHLHE40 215 

mRNA expression in peripheral blood monocyte-derived macrophages (MDM) from 216 

healthy donors. The uncommon G allele of rs4496464 was associated with increased 217 

BHLHE40 in unstimulated monocytes using a dominant model of inheritance (Figure 5; 218 

p = 0.026, A/A vs (G/A + G/G), Mann-Whitney U-test). No other BHLHE40 SNPs were 219 

associated with expression.  There was no association in LPS stimulated monocytes. 220 

CNBP and REL variants were not associated with their respective transcripts (data not 221 

shown). 222 

 223 

Rs4496464 is associated with IL-10 production in LPS and TBWCL stimulated monocyte-224 

derived macrophages. 225 

 To validate our association between rs496464 and IL-10 expression in DCs, we 226 

measured IL-10 secreted from monocyte-derived macrophages (MDMs) stimulated with 227 

either LPS (50 ng/ml) or TBWCL (25 µg/ml) overnight (Figure 6A, n = 26). The rs4496464 228 
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G allele was associated with increased IL-10 after LPS stimulation (Figure 6B, p = 0.01, 229 

generalized linear model). SNP rs4496464 was also associated with increased IL-10 after 230 

TBWCL (Figure 6C, p = 0.005, generalized linear model). SNP rs4496464 was not 231 

associated with TNF secretion after either LPS (Figure 6D) or TBWCL stimulation (Figure 232 

6E), which suggests that variation in BHLHE40 is associated with IL-10 production 233 

specifically, over proinflammatory cytokine responses. 234 

 235 

A genetic marker for REL rs842634 is associated with an increased risk for TB meningitis. 236 

 Our data suggests that rs842634 and rs11709852 are associated with increased 237 

IL-12 in DCs and rs4496464 is associated with increased IL-10 production from 238 

peripheral blood monocytes and DCs in our local population. We hypothesized that 239 

these polymorphisms are associated with susceptibility to TB due to their influence on 240 

these critical immune phenotypes. Within a large genome wide association study 241 

comparing Vietnamese individuals with adult pulmonary TB (PTB; n =1598) or TB 242 

meningitis (TBM; N = 407) with control subjects (N = 1139), we evaluated if SNPs in  243 

CNBP, REL, and BHLHE40 were associated with adult PTB or TBM and in LD with our 244 

SNPs of interest (Figure E2). Although REL rs842634 was not associated with TBM, it was 245 

in moderate to high LD with rs842618 in the Seattle cohort (R2 0.69, D’ 1.0) as well as in 246 

the Vietnamese population (R2 0.39, D’ 1.0). The minor allele of REL SNP rs842618 was 247 

associated with an increased risk for TBM (p = 0.03; OR 1.27, allelic model, Table 1 and 248 
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Table E3). These data best fit a dominant model (Table 1, p = 0.035, OR 1.32, 95% CI 249 

1.02 – 1.73) No BHLHE40 or CNBP SNPs were associated with TBM, including rs4496464 250 

and rs11709852. We did not identify any associations between SNPs in REL, CNBP, or 251 

BHLHE40 SNPs with PTB  (Table E4).  Together, these data suggest that a causal REL 252 

SNP linked to rs842634 and rs842618 is associated with both increased IL-12 production 253 

and increased risk of adult TBM in Vietnam. 254 

 255 

BHLHE40 variants are associated with pediatric TB in South Africa. 256 

We next evaluated whether variants in CNBP, REL, and BHLHE40 were associated with 257 

pediatric TB in South Africa (Figure E3) (40).  BHLHE40 SNP rs11130215 was associated 258 

with decreased risk for pediatric TB in an allelic model (Table 2 and Table E5; p = 0.001) 259 

which best fit a dominant model of inheritance p = 3.3x10-4, OR 0.5 (0.33 – 0.75). 260 

Rs11130215 was in low LD with rs4496464 in the South African cohort (R2 0.10, D’ 0.30). 261 

To adjust for ethnic heterogeneity, we genotyped a panel of 95 ancestry informational 262 

markers (AIMs) and performed principal components analysis, as described previously 263 

(37). The association between rs11130215 and pediatric TB remained statistically 264 

significant after adjustment for gender and the top five principal components of the 265 

tested AIMs (Table 2, p = 0.01, OR 0.24 - 0.83). No REL or CNBP SNPs were associated 266 

with pediatric TB, including rs842634 and rs11709852. Together, these data suggest that 267 
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a BHLHE40 polymorphism (rs11130215) linked to rs4496464 and increased IL-10 268 

expression is associated with a decreased risk for pediatric TB. 269 

 270 

 CREL, CNBP and BHLHE40 SNPs are not associated with BCG-induced T cell responses in 271 

South African infants.  272 

 We next examined whether these variants were associated with adaptive immune 273 

responses as a possible mechanism of TB susceptibility due to DC regulation of T cell 274 

responses. We tested this hypothesis in a cohort of South African infants that were 275 

vaccinated with BCG at birth and whose BCG-specific CD4+ IL-2, TNF, and IFNγ+T cell 276 

responses were measured at 10 weeks of age by flow cytometry (36, 37) (Figure E4). 277 

Overall media (Figure 7A), BCG-induced (Figure 7B), and SEB-induced (Figure 7C) 278 

responses are shown. We evaluated the association between genetic variation in our 279 

SNPs of interest: rs842634, rs11709852, rs4496464, and rs11130215, with the frequency 280 

of BCG-induced IL-2, TNF, and IFNγ in CD4+ T-cells. Rs11709852 and rs842634 were 281 

monoallelic in the South African cohort and not analyzed further. Rs4496464 was 282 

associated with a trend toward increased IL2+CD4+ T cell frequency after BCG re-283 

stimulation but this did not achieve statistical significance (Figure 7D, p = 0.15, 284 

generalized linear model). This SNP was not associated with TNF or IFNγ frequency in 285 

CD4+ T cells (Figure  7E-F). The G allele of BHLHE40 rs11130215 was associated with 286 

increased frequency of BCG-specific IL2+CD4+ cells (Figure 7G, p = 0.015, generalized 287 
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linear model), but not TNF or IFNγ (Figure 7H-I). In a second validation cohort, 288 

rs11130215 was associated with a trend toward increased IL-2 expression that did not 289 

achieve statistical significance (Figure 7J, p = 0.06, generalized linear model). However, 290 

when these data were combined, we found that this SNP was associated with increased 291 

IL-2 from CD4+ T cells (Figure 7K, p = 0.006, generalized linear model).  Taken together, 292 

these data suggest that a BHLHE40 variant is associated with increased IL-2-producing 293 

CD4+ T cells, and decreased risk for pediatric TB in a genetic cohort of South African 294 

infants.  295 

 296 

Discussion 297 

IL-12 and IL-10 are both essential for an effective host response to tuberculosis, 298 

and overexpression of either cytokine can similarly lead to adverse outcomes. In this 299 

paper, we found that variation in REL and BHLHE40, genes that directly influence 300 

expression of these cytokines, is associated with secretion of IL-12 and IL-10, 301 

respectively, from peripheral blood DCs using a flow cytometry-based assay. To our 302 

knowledge, this assay has not been used previously to evaluate the genetics of DC 303 

immune responses (20, 41). Related variants in REL were associated with increased 304 

expression of IL-12 and also with increased susceptibility to TBM, and SNPs in BHLHE40 305 

associated with increased IL-10 were also associated with decreased risk for pediatric TB. 306 
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These data represent the most comprehensive evaluation of the human genetic loci 307 

associated with IL-10 and IL-12 production in TB pathogenesis.  308 

 309 

 Both insufficient and excessive IL-10 responses are harmful to TB control (32, 42). 310 

We found BHLHE40 variants that were associated with increased IL-10 production in 311 

myeloid cells after LPS and TB whole cell lysate stimulation. A variant in linkage 312 

disequilibrium was also associated with increased BCG-specific IL-2+CD4+ T cells with 313 

stable frequencies of TNF+ and IFNγ+ CD4+ T cells in South African infants. Critically, 314 

this variant was associated with decreased risk for developing pediatric TB. Canonically, 315 

increased IL-10 is associated with increased differentiation of regulatory T cells (43), 316 

which may delay the appropriate activation of effective adaptive immune responses to 317 

Mtb (44). However, a balanced immune response with increased number of antigen-318 

specific T cells overall is beneficial to preventing infection. The relatively modest 319 

changes to the cytokine response associated with genotype may influence T cell 320 

proliferation and differentiation to promote a balanced and effective T cell response 321 

(45). Moreover, BHLHE40 also demonstrates direct effects on T cell function in murine 322 

models, and may be an alternate mechanism for the phenotypes we observed (46). IL-10 323 

decreases pathology that may promote effective Mtb control (34, 47). Our observations 324 

are consistent with a model whereby modest increases in BHLHE40 are associated with 325 

increased IL-10 in macrophages, expanded IL-2+CD4+ T cell responses, and protection 326 
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from TB. Notably, these data support findings from the mouse model, where BHLHE40 327 

deficiency was associated with early Mtb death due to excessive neutrophil-dominant 328 

inflammatory response (34). Study of the factors that influence IL-10 expression may 329 

provide insight into a suite of macrophage or T cell changes that may provide insight 330 

into TB susceptibility and control. 331 

 332 

 Variation in REL rs842634 was associated with increased IL-12 production from 333 

dendritic cells after LPS and TBWCL stimulation. A SNP in linkage disequilibrium, 334 

rs842618, was also associated with increased risk for TB meningitis in a Vietnamese 335 

cohort. Although IL-12 is canonically associated with protection from TB, significant 336 

evidence has accumulated that increases in proinflammatory cytokines, including TNF 337 

and IFNγ, may also be harmful for Mtb control in some settings, including TBM (12, 45, 338 

48).  Although IL-12α and IFNγ are essential for control of Mtb infection, the amount 339 

necessary for protection remains unclear (45). Excessive IFNγ induces immune pathology 340 

requiring anti-inflammatory therapy during TB immune reconstitution syndrome (49). IL-341 

12 also induces TNF, in CD4+ T cells as part of the Th1 response (50). Excess TNF in 342 

Mtb-infected macrophages leads to necrosis and Mtb spread, and worsens TBM 343 

outcomes (51). Identification of genetic factors that modulate dendritic cell 344 

proinflammatory cytokines provides insight into the optimal balance of cytokines to 345 

control Mtb in adults. 346 
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 347 

This study has several potential limitations. We do not yet have evidence of 348 

functional SNPs that directly regulate gene function. Future fine-mapping studies with in 349 

vitro mechanistic assays will be required to determine the specific alleles that regulate 350 

cellular function and clinical outcomes together. A second limitation is that some of 351 

these observations do not achieve statistical significance after adjustments for multiple 352 

comparisons with associations with clinical outcomes.  Although this limitation is true for 353 

the clinical findings, the evidence supporting a genetic regulatory role of human cellular 354 

IL12/IL10 responses was robust and provided support for the possible clinical 355 

associations.  Given this, we used a threshold of p < 0.05 as a measure of statistical 356 

significance, without the conservative Bonferroni correction. Further studies will be 357 

needed in additional cohorts, particularly after discovery of the causal SNP that 358 

regulates cytokine production. Third, case-control studies of TB outcomes may have 359 

misclassification of controls, as we examined population controls in studies in our 360 

Vietnamese cohort. However, classification errors that arise from such control 361 

populations likely lead to reduction in the statistical power of these studies.  362 

 363 

To our knowledge, this study represents the most comprehensive analysis to date 364 

of genetic regulation of dendritic cell IL-12 and IL-10 production by common 365 

polymorphisms and their association with TB outcomes. Although further studies are 366 
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required, overlapping genetic studies of immune outcomes and TB clinical susceptibility 367 

may lead to important breakthroughs in TB vaccine design and immune drug 368 

development. 369 
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Figure Legends 378 

Figure 1. IL-10 and IL-12 responses in peripheral blood DCs in whole blood 379 

stimulation assay 380 

Peripheral whole blood was obtained from healthy volunteers and stimulated with either 381 

negative control or immune stimuli followed by BFA and monensin 2 hours afterward. 382 

Afterward cells were fixed and frozen. At the time of staining, samples were thawed in 383 

large batches to minimize batch effects. A) Gating strategy. From left to right, singlets 384 

were selected, then leukocytes.  CD66+ cells were gated out, and the HLA-DR+ 385 

population selected. CD14- and CD16- and CD11c+ cell population was selected and 386 

the proportion of cytokine positive cells were measured as compared to total number of 387 

HLA-DR+CD11c+ DCs.  388 

B) Proportion of IL-12+CD11c+ DCs after media control, LPS (10 ng/ml), or Mtb whole 389 

cell lysate (TBWCL; 50 µg/ml) stimulation for 24 hours.  390 

C) Proportion of IL-10+CD11C+ DCs after media, LPS, or TBWCL for 24 hours.  391 

D) Proportion of IL-12+CD11c+ DCs after media, LPS, or live BCG (106 CFU) stimulation 392 

for 6 hours. Bars demonstrate median values. Data provided are not corrected for 393 

background cytokine positivity. Dots represent individual values. N = 46. 394 

 395 

Figure 2. REL SNP rs842634 and CNBP SNP rs11798052 are associated with IL-12 396 

production after TBWCL stimulation of peripheral blood DCs for 24 hours 397 
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A-B) Proportion of CD11c+ DCs producing IL-12 after A) Mtb whole cell lysate (TBWCL; 398 

50 µg/ml) stimulation or B) LPS (10 ng/ml) stimulation for 24 hours. Data are stratified 399 

by rs842634 genotype; N = 19 T/T, 21 T/C, and 7 C/C. 400 

C-D) Proportion of CD11c+ DCs producing IL-12 after C) TBWCL or D) LPS stimulation 401 

for 24 hours. Data are stratified by rs11798052 genotype; N = 34 G/G, 5 G/A, and 2 A/A. 402 

All data presented in this figure and afterward represent background-corrected values 403 

(proportion of cytokine-producing cells after ligand stimulation – proportion of 404 

cytokine-producing cells after media control stimulation). 405 

* p < 0.05; statistical significance determined by generalized linear model. 406 

 407 

Figure 3. REL SNP rs842634 is associated with IL-12 production in peripheral blood 408 

DCs after 6 hours of BCG or LPS stimulation  409 

A-B) Proportion of CD11c+ DCs producing IL-12 after A) live BCG stimulation (106 CFU) 410 

or B) LPS (10 ng/ml) stimulation for 6 hours. Data are stratified by rs842634 genotype; N 411 

= 15 T/T, 16 T/C, and 4 C/C.  412 

C-D) Proportion of CD11c+ DCs producing IL-12 after C) live BCG stimulation or D) LPS 413 

stimulation for 6 hours. Data are stratified by rs11798052 genotype; N = 31 G/G, 5 G/A. 414 

* p < 0.05; ** p < 0.01, *** p < 0.001; statistical significance determined by generalized 415 

linear model for A-B and Mann-Whitney U-test for C-D. 416 

 417 
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Figure 4. BHLHE40 SNP rs4496464 is associated with IL-10 production from 418 

peripheral blood DCs after Mtb whole cell lysate stimulation  419 

A-B) Proportion of CD11c+ DCs producing IL-10 after A) Mtb whole cell lysate (TBWCL; 420 

50 µg/ml) or B) LPS (10 ng/ml) stimulation for 24 hours. Data are stratified by rs4496494 421 

genotype; N = 40 A/A, 7 G/A and 2 G/G.  422 

C-D) Proportion of CD11c+ DCs producing IL-10 after C) LPS or D) TBWCL stimulation 423 

for 24 hours. Data are stratified by rs11798052 genotype; N = 33 G/G, 5 G/A, and 2 A/A.  424 

E-F) Proportion of CD11c+ DCs producing IL-10 after E) LPS or F) TBWCL stimulation for 425 

24 hours. Data are stratified by rs842634 genotype; n = 19 T/T genotype, 21 T/C 426 

genotype, and 7 C/C genotype.  427 

G-H) Proportion of CD11c+ DCs producing IL-12 after E) TBWCL or F) LPS stimulation 428 

for 24 hours. Data are stratified by rs4496494 genotype. N = 38 A/A, 7 G/A, 2 G/G.  429 

* p < 0.05; ** p < 0.01, *** p < 0.001; generalized linear model. 430 

 431 

Figure 5. BHLHE40 SNP rs4496464 is associated with increased BHLHE40 mRNA 432 

expression in monocyte-derived macrophages  433 

BHLHE40 mRNA expression, normalized to GAPDH expression, was measured from RNA 434 

extracted from MDMs isolated from healthy volunteers and stratified by rs4496464; n = 435 

26 A/A, 7 G/A, and 1 G/G. * p < 0.05; dominant genetic model. 436 

 437 
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Figure 6. BHLHE40 SNP rs4496464 is associated with IL-10 production from 438 

monocyte-derived macrophages 439 

Peripheral blood monocytes were differentiated into macrophages by M-CSF for 5 days, 440 

then stimulated with either LPS (50 ng/ml) or Mtb whole cell lysate (TBWCL; 25 µg/ml).  441 

A) Overall IL-10 cytokine concentrations from cellular supernatants MDMs after 24 hours 442 

of stimulation.  443 

B-C) Concentration of IL-10 in cellular supernatants after B) LPS stimulation or C) TBWCL 444 

stimulation for 24 hours, stratified by rs4496494 genotype. N = 20 A/A, 6 G/A, 2 G/G.  445 

D-E) Concentration of TNF in cellular supernatants after D) LPS stimulation or E) TBWCL 446 

stimulation for 24 hours and stratified by rs4496464. 447 

* P < 0.05, ** P < 0.01, *** P < 0.001; generalized linear model. 448 

 449 

Figure 7. BHLHE40 SNP rs11130215 is associated with BCG-induced IL-2+CD4+ T-450 

cell responses in South African infants  451 

BCG-specific CD4+ T cell responses from South African infants at 10 weeks of age were 452 

measured by flow cytometry and stratified by genotype of interest. Background 453 

correction was performed by subtracting the proportion of cytokine-producing cells 454 

after BCG or SEB stimulation from media control stimulation. 455 

A-C) A) Media control, B) BCG-induced, and C) staphylococcus enterotoxin B (SEB)-456 

induced IL-2, TNF, and IFNγ+ CD4+ T cell responses. N = 88. 457 
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D-F) We measured the frequency of BCG-specific D) IL-2+, E) TNF+, and F) IFNγ+ CD4+ 458 

T cells after 12 hours of re-stimulation and stratified by rs4496464. A/A N = 29, G/A N = 459 

44, G/G N = 11. 460 

G-I) We measured the frequency of BCG-specific G) IL-2+, H) TNF+, and I) IFNγ+ CD4+ T 461 

cells after 12 hours of re-stimulation and stratified by rs11130215 in a discovery cohort. 462 

A/A N = 24, G/A N = 31, G/G N = 19. 463 

J) Proportion of BCG-specific IL-2+CD4+ T cells, stratified by rs11130215, in an 464 

independent validation set. A/A N = 26, G/A N = 47, G/G N = 20. 465 

K) Combined datasets from D) and I). 466 

All data visualized as Tukey plots, with middle bar representing median, thick bars with 467 

interquartile range, and whiskers drawn to 10-90th percentile. Outliers are represented 468 

with dots. * p < 0.05, ** p < 0.01, generalized linear model. 469 

 470 

  471 
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Table 1. Association of REL SNPs with adult TB meningitis in Vietnam. Number of 472 

individuals with major homozygous (AA), heterozygous (Aa), and minor homozygous 473 

(aa) genotypes described. Total: total N in group after genotyping. Allelic p: p value in 474 

an allelic genetic model. Dom p: p value in a dominant genetic model of inheritance. OR: 475 

odds ratio in an allelic genetic model. CI: confidence interval. 476 

 477 

  Control  Case     

locus Gene AA Aa aa Total AA Aa aa Total Allelic p Dom p 

OR 

(95% CI) 

rs842618 REL 883 231 13 1075 289 99 7 395 0.032 0.035 

1.33 

(1.02 – 

1.73) 

rs842634 REL 901 218 11 1130 299 92 6 397 0.052 0.064 

1.21 

(0.72-

2.0) 

 478 

  479 
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Table 2. Association of SNPs with pediatric TB in South Africa.  Number of 480 

individuals with major homozygous (AA), heterozygous (Aa), and minor homozygous 481 

(aa) genotypes described.  Allelic p: p value in an allelic genetic model. Dom p: p value in 482 

a dominant genetic model by logistic regression with adjustment for ancestry and 483 

gender. OR: odds ratio; CI: confidence interval. * adjusted for ethnicity and gender by 484 

logistic regression.  485 

  Control  Case     

locus Gene AA Aa aa Total AA Aa aa Total 

Allelic 

p Dom p 

OR (95% 

CI) 

rs11130215 BHLHE40 99 169 65 333 78 67 25 170 0.001 3.3x10-4 

0.5 (0.33 – 

0.75 

           0.012* 

0.56 (0.28 

-0.87)* 

rs4496464 BHLHE40 158 141 35 334 86 66 17 169 0.51 0.48 

1.21 (0.72-

2.0) 

           0.39* 

1.30 (0.71-

2.4)* 

 486 

 487 

  488 
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