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ABSTRACT 

 

Dengue virus (DENV) infects 50-100 million people worldwide every year and is 

the causative agent of dengue fever (DF) and the more severe dengue hemorrhagic 

fever/dengue shock syndrome (DHF/DSS).  There are four genetically and 

immunologically distinct DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4).  

Evidence suggests that an increased risk for DHF/DSS during secondary infection with a 

heterologous DENV serotype is due to an immunopathological response mediated by 

serotype-cross-reactive memory T cells from the primary infection. Furthermore, 

epidemiological studies have shown that the sequence of infection with different DENV 

serotypes affects disease severity.  Though much has been learned from human studies, 

there exist uncontrollable variables that are intrinsic in this system such as genetic factors 

and unknown infection histories.  These factors can skew experimental results, making 

interpretations difficult.  Therefore, a murine model to study the immunologic aspects of 

sequential dengue infections would be an asset to the field of dengue research. 

To examine the effect of sequential infection with different DENV serotypes on 

the CD8+ T cell response, we immunized Balb/c mice with a primary DENV infection on 

day 0 and subsequently challenged with a heterologous secondary DENV infection on 

day 28. We tested all possible sequences of infection with the four serotypes.  We 

analyzed the T cell response to two previously defined epitopes on the DENV E (Ld-

restricted) and NS3 (Kd-restricted) proteins.  Using ELISPOT and intracellular cytokine 

staining, we measured the frequency of T cells secreting IFNγ and TNFα in response to 

stimulation with these epitopes during three phases: acute primary, acute secondary, and 



 xi

the memory phase after primary infection.  We found that the T cell response in 

heterologous secondary infections was higher in magnitude than the response in acute 

primary infection or during the memory phase.  We also found that the hierarchy of 

epitope specific responses, as measured by IFNγ secretion, was influenced by the 

sequence of infections.  The adoptive transfer of immune serum or immune splenocytes 

suggested that memory T cells from the primary infection responded to antigens from the 

secondary infection.  In vitro experiments with T cell lines generated from mice with 

primary and secondary DENV infections suggested the preferential expansion of cross-

reactive memory T cells.   

In testing all of the different possible sequences of infection, we observed that two 

different sequences of infection (e.g., DENV-2 followed by DENV-1 versus DENV-2 

followed by DENV-3) resulted in differential CD8+ T cell responses to the NS3 peptide 

even though both secondary infection serotypes contain the identical peptide sequence. 

To investigate this phenomenon, we examined the role of CD4+ T cell help on the 

memory CD8+ T cell response.  We found that CD4+ T cell cytokine responses differ 

depending on the sequence of infection.  In addition, it was also shown that cross-

reactivities of the CD4+ T cell response are also sequence-dependent.  Moreover, dengue-

specific memory CD4+ T cells can augment the secondary CD8+ T cell response.  Taken 

together, we demonstrated that this serotype sequence-dependent phenomenon is the 

result of differential help provided by cross-reactive memory CD4+ T cells.  

The findings in this novel mouse model support the hypothesis that both CD4+ 

and CD8+ serotype-cross-reactive memory T cells from a primary dengue virus infection 

alter the immune response during a heterologous secondary dengue virus infection. These 



 xii

data further elucidate potential mechanisms whereby the specific sequence of infection 

with different dengue virus serotypes influences disease outcomes in humans. 

 



 

CHAPTER I 

 

INTRODUCTION 

 

Epidemiology of dengue 

Dengue virus (DENV) is the causative agent of dengue and a significant source of 

global morbidity.  The first known epidemic given the name dengue occurred in Spain in 

1801 (Soler, Pascual et al. 1949).  However, there is evidence of epidemics of dengue-

like illness throughout the world long before the nineteenth century.  The first such report 

was during the Chin Dynasty of China between 265 and 420 AD (Nobuchi 1979).  

Outbreaks consistent with dengue occurred in the West Indies and Panama in 1635 and 

1699, respectively (Howe 1977; McSherry 1982).  The first reports of major epidemics 

widely recognized as likely to be dengue were in Asia, Africa, and North America in 

1779 and 1780 (Rush 1789; Hirsch 1883; Pepper 1941; Howe 1977).  Today DENV 

infects 50 – 100 million people world wide every year.  Most of these infections are 

asymptomatic or cause an uncomplicated illness, dengue fever (DF), but 500,000 develop 

into severe dengue disease, dengue hemorrhagic fever (DHF), which has a 2.5% fatality 

rate.  Most of these cases of DHF are in children (Pinheiro and Corber 1997).     

 DENV is a member of the Flaviviridae family and genus Flavivirus.  Other 

members of this genus include yellow fever virus, West Nile virus, and Japanese 

encephalitis virus.  DENV is an arthropod-borne virus, transmitted predominantly by the 

mosquito vector Aedes aegypti (Gubler 1989).  This particular species of mosquito is well 

adapted to urban areas and feeds during the daytime – an advantageous adaptation for 
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feeding on humans since the density of humans outside is higher during the day.  The 

virus is passed to the mosquito by feeding on an infected person.  After eight to ten days 

of incubation of the virus in the mosquito, the mosquito can then pass on the virus by 

feeding on another human, thus continuing the transmission cycle.  Though A. aegypti is 

the principal vector for dengue, the virus may also be spread by the mosquito Aedes 

albopictus (Gubler 1989).  

 

Dengue virus genome, structure, and proteins 

There are four immunologically distinct serotypes of DENV: dengue-1 virus 

(DENV-1), dengue-2 virus (DENV-2), dengue-3 virus (DENV-3) and dengue-4 virus 

(DENV-4).  These viruses share approximately 70% sequence identity.  The genome of 

DENV is a positive-sense single-stranded RNA, which has a length of ~11kb (Henchal 

and Putnak 1990).  Ten proteins are encoded by the RNA.  Three proteins are structural 

components of the virion: nucleocapsid (C), envelope (E), and membrane (M).   The 

remaining seven are nonstructural (NS) proteins:  NS1, NS2a, NS2b, NS3, NS4a, NS4b, 

and NS5.  The RNA is packaged by the nucleocapsid protein, which is then further 

enclosed in a lipid bilayer containing the envelope and membrane proteins (Henchal and 

Putnak 1990).   

Each protein DENV encodes has an indispensable function, some proteins having 

several functions.  The C protein forms the structural component of the nucleocapsid 

(Henchal and Putnak 1990).  The prM (precursor M) protein is cleaved into the mature M 

protein that is involved in the morphogenesis of the virion and affects viral infectivity 

(Randolph, Winkler et al. 1990). The E protein is a receptor binding and membrane 
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fusion protein (Allison, Schalich et al. 2001; Lorenz, Allison et al. 2002).  It is also a 

target for neutralizing antibodies (Monath, Arroyo et al. 2002).  The functions of the 

nonstructural proteins are less well understood.  NS1 is known to be a complement fixing 

protein and can exist in either cell-associated or secreted forms (Lee, Crooks et al. 1989).  

NS3 has many functions.  It has helicase activity and is involved is the hydrolysis of the 

anhydride bond of the nucleotide triphsophates (Bazan and Fletterick 1989; Benarroch, 

Selisko et al. 2004).  In addition, it is a serine protease and functions with the NS2B 

cofactor (Wengler and Wengler 1991; Zhang, Mohan et al. 1992).  NS4a and NS4b are 

both hydrophobic and function in inhibiting interferon (IFN) signaling (Munoz-Jordan, 

Laurent-Rolle et al. 2005). NS5 is the viral RNA dependent RNA polymerase and plays a 

role in capping through its GTP-binding site and methyltransferase function (Egloff, 

Benarroch et al. 2002).  

 

Dengue life cycle 

     The DENV life cycle begins through receptor mediated endocytosis.  Though the 

major cellular receptor for DENV is not definitely known, some potential receptors are 

DC-SIGN, GRP78, and CD14-associated molecules (Chen, Wang et al. 1999; 

Tassaneetrithep, Burgess et al. 2003; Jindadamrongwech, Thepparit et al. 2004; Lozach, 

Burleigh et al. 2005).  A second molecule, possibly a coreceptor, also appears to be 

required for viral entry (Martinez-Barragan and del Angel 2001).  Potential co-receptors 

are glycosaminoglycans such as heparan sulfate (Chen, Maguire et al. 1997).  

Acidification of the endosomal vesicle causes conformational changes in the virion, 

leading to fusion of the viral and endosomal membranes and the release of the 
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nucleocapsid into the cytoplasm.  Dissociation of the RNA from the capsid follows.  The 

positive sense RNA is translated into one polyprotein that is then post-translationally 

cleaved and processed.  Replication takes place on intracellular membranes.  Virus 

assembly occurs in the endoplasmic reticulum (ER).  Particles form by the budding of the 

RNA-capsid complex into the ER where E and M are already present.  These immature 

viral particles coated with prM-E heterodimers enter and travel through the trans-Golgi 

network.  Cleavage of prM by a furin protease results in the formation of E homodimers 

and the mature virion.  Mature virions are released through exocytosis (Mukhopadhyay, 

Kuhn et al. 2005). 

 

Clinical manifestations of dengue virus infections 

 DENV infection of humans results in a continuum of disease manifestations 

ranging from no symptoms to severe disease.  The majority of infected persons remain 

asymptomatic.  Dengue fever (DF) is the less severe outcome of dengue disease.  It is a 

self-limited disease resulting in fever, flu-like symptoms, myalgia, headache, nausea, 

vomiting, arthralgia, rash, and retrorbital pain (Kalayanarooj, Vaughn et al. 1997).  

Dengue hemorrhagic fever (DHF) is the most severe form of dengue disease.  In addition 

to the above-mentioned symptoms of DF, DHF is characterized by an increase in the 

permeability of the vascular endothelium leading to plasma leakage.  DHF has the 

potential to result in shock (dengue shock syndrome, DSS) and, left untreated, may be 

fatal (Guzman and Kouri 2002).  DHF generally occurs between days 3-5 of illness, 

corresponding to the time of defervesence and resolution of viremia.  The timing of the 
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onset of illness, after viral clearance, suggests that DHF is caused by the immune 

response as opposed to the virus itself (Halstead 1982).   

Dengue is a systemic disease.  Hematologic findings include leukopenia and 

thrombocytopenia; these manifestations may be caused by a combination of bone marrow 

suppression and/or platelet destruction (Guzman and Kouri 2002).  In addition, elevated 

serum aminotransferases are also seen in DENV-infected patients, indicating liver 

involvement (Kalayanarooj, Vaughn et al. 1997).  Necrosis of the liver cells has been 

reported in fatal cases (Guzman and Kouri 2002).  CNS involvement (encephalitis) in 

dengue rarely occurs (Guzman and Kouri 2002). 

 

Risk factors for severe dengue disease 

The risk for developing DHF is influenced by individual, epidemiological, and 

viral factors. 

Individual factors 

 Risk factors for DHF for the individual include age, race, nutritional status, 

human leukocyte antigen (HLA)-type, and sequential infections.  DHF is more prevalent 

in young children, usually under the age of eleven (Kliks, Nimmanitya et al. 1988).  

Some authors have suggested that this is due to the fact that the baseline vascular 

permeability of children is higher than in adults (Gamble, Bethell et al. 2000).  As for 

race, epidemiological studies in Cuba and Haiti suggest that Caucasian populations are 

more susceptible to DHF than those of African descent (Guzman, Alvarez et al. 1999).  In 

addition, unlike many other diseases, DHF appears to be less common in malnourished 
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individuals (Kalayanarooj and Nimmannitya 2005).  This phenomenon may be due to 

immune suppression. 

Correlations have been drawn between increased probability for severe dengue 

disease and HLA type.  Stephens et al, in a study of 263 Thai patients, reported that there 

was an association of HLA class I alleles HLA-A*0203 and HLA-B*52 with the less 

severe DF (Stephens, Klaythong et al. 2002).  They also showed that there were 

correlations between HLA-A*0207 and HLA-B*51 and an increased risk for DHF. 

However, a study in a Caucasian Brazilian population did not find an increase in 

frequency of an particular HLA class I antigens in patients exhibiting DF as compared to 

the control group of healthy individuals (Polizel, Bueno et al. 2004).  A relationship was 

found between HLA-A2 and HLA-B blank and a greater possibility for manifesting DHF.  

HLA-B13 had a negative correlation with the risk of DHF.  Paradoa Perez et al 

confirmed that HLA-A1 and HLA-B blank were linked with severe disease along with 

HLA-Cw1 and HLA-A29 (Paradoa Perez, Trujillo et al. 1987).  In a different Cuban 

cohort, HLA-B*15 and HLA-DRB1*04 were found at increased frequency among 

patients that had either DF or DHF compared to healthy control subjects (Sierra, Alegre 

et al. 2007).  Thus, these studies suggest a genetic risk factor for dengue hemorrhagic 

fever and also provide evidence for an immunopathogenic mechanism for severe disease.   

 Sequential infections with DENV have been noted as one of the most important 

risk factors for severe dengue disease (Halstead 1982; Sangkawibha, Rojanasuphot et al. 

1984).  After infection with one serotype of DENV, one develops lifelong homotypic 

immunity to that serotype.  Since a primary infection with one serotype offers only 

transient (months) protection against a secondary infection with another serotype, 
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secondary infections with other DENV serotypes can occur.  DHF uncommonly occurs 

during a primary infection (Halstead 1982; Sangkawibha, Rojanasuphot et al. 1984).  A 

Thai study in 1970 showed that 85% of patients with DHF had high titers of cross-

reactive antibodies, suggesting a previous DENV infection (Halstead, Nimmannitya et al. 

1970).  Following DENV epidemics in Thailand in the early 1980’s, two reports emerged 

stating that patients contracting a secondary infection were 15 to 80 times more likely to 

have severe disease than those experiencing a primary infection.  A 1981 Cuban outbreak 

of DENV-2 followed a DENV-1 outbreak in 1977: 98% of DHF patients had a secondary 

infection (Guzman, Kouri et al. 1987; Burke, Nisalak et al. 1988).  More recently, another 

outbreak occurred in Cuba in 2001-2002 and also linked the occurrence of DHF/DSS 

with secondary infection (Alvarez, Rodriguez-Roche et al. 2006).  These epidemiological 

data suggest that there is an increased risk of DHF in secondary infection.  This risk 

factor of secondary infections suggests an immunopathological mechanism.  

 Epidemiological factors 

 A rise in the density of the dengue vector Aedes aegypti increases the global risk 

for dengue (Gubler 1989).  Uncontrolled urbanization due to population growth has 

contributed to substandard housing and sanitation and lack of mosquito control.  These 

scenarios promote the larval habitats of Aedes, such as the accumulation of used tires and 

non-biodegradable plastics, and thereby enhance DENV transmission (Gubler 1989).   

Globalization also increases the circulation of DENV.  There has been an increase 

in the amount of airplane travel, leading to travelers being infected in endemic areas and 

then bringing the virus back when they return. This can also lead to the creation of 

hyperendemic (co-circulation of multiple serotypes) regions.  Hyperendemic areas lead to 
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a situation allowing heterologous secondary infections, a risk factor for DHF/DSS 

(Gubler and Trent 1993; Gubler and Clark 1995; Gubler 2002). 

Viral factors 

   Viral characteristics, such as serotype and genotype, affect the risk for DHF.  

Certain serotypes of DENV, especially DENV-2 and DENV-3, have been associated with 

severe disease more frequently than the other serotypes (Guzman and Kouri 2002).  

Different genotypes of DENV within a particular serotype have also been shown to have 

differential outcomes in disease severity.  Though studies in Asia had shown that 

secondary infection with DENV-2 caused an increased risk for DHF, no DHF/DSS was 

seen in DENV-2 epidemics in the Americas until Asian genotype DENV-2 strains were 

introduced.  Watts et al examined a DENV-2 outbreak in Peru in 1995 where only mild 

illness occurred (Watts, Porter et al. 1999).  The virus isolated from serum was sequenced 

and determined to be an American genotype DENV-2 strain (Leitmeyer, Vaughn et al. 

1999).  Epidemiological data from Asian outbreaks would have predicted that DENV-2 

infections should cause up to 10,000 cases of DHF; however, no cases of DHF were 

detected.  These observations suggest that Asian genotype strains cause more severe 

disease in children as well as adults than American genotype strains.   

Several molecular determinants in the virus have been positively associated with 

disease severity.  In vitro and in vivo studies describe mutations in the E protein of 

dengue that affects its virulence.  Mutations that inhibit antibody recognition of the 

protein have been hypothesized to potentially cause more severe disease, whereas 

mutations that affect the function of the protein, such as those in the fusion loop, are 

believed to attenuate the virus (Roehrig, Bolin et al. 1998).  Changes in the 3’ and 5’ non-
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coding regions (NCR) of dengue are predicted to change the secondary structure of the 

RNA and therefore interfere with viral translation (Leitmeyer, Vaughn et al. 1999). 

 The specific sequence of DENV serotypes in secondary infections also has an 

important effect on the risk for DHF.  An epidemiologic study by Sangkawibha et al 

examined a 1980 outbreak in Thailand and found the highest risk for severe disease in 

secondary DENV-2 infections that followed a primary DENV-1 infection.  Primary 

DENV-3 infection followed by secondary DENV-2 appeared to cause the second highest 

incidence of DHF, followed by a primary DENV-4 infection preceding an exposure to 

DENV-2.  DENV-1 infection followed by a secondary DENV-2 infection was also linked 

with several DHF epidemics (Sangkawibha, Rojanasuphot et al. 1984).  Endy et al, in a 

prospective study of Thai school children from 1998-2000, showed that DHF occurred in 

the following DENV serotype sequences:  DENV-4 followed by DENV-2, DENV-1 

followed by DENV-3, DENV-2 followed by DENV-3, and DENV2-followed by DENV-

1 (Endy, Nisalak et al. 2002).  The Cuban epidemic of 2001-2002 identified an 

association between the occurrence of severe disease and the sequence of primary 

DENV-1 infection followed by a secondary infection with DENV-3 (Alvarez, Rodriguez-

Roche et al. 2006).  

 

Immunological response to dengue virus infections 

Upon infection with DENV, the human immune system mounts a potent innate, 

humoral, and T cell response in an effort to clear the virus. 

Innate Immune Response 
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 Dendritic cells have been shown to be a potential target cell for DENV.  However, 

dendritic cells were also proven to elicit a potent anti-viral response.  The dendritic cell 

membrane protein CD209/DC-SIGN is able to bind dengue virus E protein, and therefore 

may act as a receptor for viral entry into dendritic cells, promoting viral propagation 

(Lozach, Burleigh et al. 2005).  IFNα/β production by DENV-infected dendritic cells was 

abrogated by the down regulation of Tyk2-STAT, STAT1, and STAT2 by the 

nonstructural DENV proteins, suggesting possible immune evasion activity by DENV 

(Ho, Hung et al. 2005). 

On the other hand, dendritic cells appear to participate in the immune response 

against DENV.  In vitro infection of CD14+ dendritic cells resulted in the production of 

TNFα, IFNγ, and IL-10 (Palmer, Sun et al. 2005; Deauvieau, Sanchez et al. 2007).  An 

increase in IL-12p70 has also been demonstrated in vitro upon dendritic cell infection 

(Libraty, Pichyangkul et al. 2001).  Human RIG-I, in dendritic cells, has been found to 

recognize double-stranded-RNA and is required for the production of type I interferons in 

response to flavivirus infections (Chang, Liao et al. 2006).    

Other cells are also likely key players in the innate immune response against 

dengue.  Natural killer (NK) cells have been found to be involved in antibody-dependent 

cell-mediated cytotoxicity (ADCC) of DENV-infected cells (Kurane, Hebblewaite et al. 

1986; Laoprasopwattana, Libraty et al. 2007).  Many other cell types, including epithelial 

and endothelial cells, mast cells and myelomonocytic cell lines, primary human 

monocytes, and monocyte-derived macrophages, have been shown to be susceptible to 

infection with DENV in vitro and respond to infection by producing the chemokines IL-
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6, IL-8, RANTES, MIP-1α, and MIP-1β (Spain-Santana, Marglin et al. 2001; Lee, Su et 

al. 2007).  

Antibody Responses 

Primary infection with DENV induces the generation of antibodies against the 

structural proteins E and prM and also against the non-structural protein NS1. In vitro 

studies by Roehrig et al have shown that anti-E antibodies are able to neutralize the virus 

and also prevent viral binding and fusion (Roehrig, Bolin et al. 1998).  In vivo studies 

have shown that passive immunization of mice with antibodies directed against E, prM, 

or NS1 can protect animals against lethal DENV infection.  Anti-NS1 antibodies are able 

to fix complement and mediate viral lysis.  Passive immunization of mice with anti-PrM, 

NS1 and E antibodies have been shown to protect against lethal dengue infection 

(Kaufman, Summers et al. 1987; Schlesinger, Brandriss et al. 1987; Kaufman, Summers 

et al. 1989).   

T-Cell Responses 

A vast amount of research has been conducted on the importance of T cells 

functions during the immune response to DENV.  DENV-specific proliferation was found 

in both CD8+ and CD4+ T cell populations in peripheral blood mononuclear cells 

(PBMC) from DENV-immune donors using both tritiated thymidine incorporation and 

also by flow cytometry analysis of dilution of CFSE in cells stained pre-stimulation 

(Kurane, Meager et al. 1989).  In bulk PBMC and clones, a predominantly TH1 response 

was found, demonstrated by the production of IFNγ, TNFα, IL-2, and TNFβ (Hober, Poli 

et al. 1993; Green, Vaughn et al. 1999; Mustafa, Elbishbishi et al. 2001).  Small amounts 

of the TH2 cytokine, IL-4, have been found to be produced (Mori, Kurane et al. 1997).  

11



 

Though most of the cytolytic responses measured in short-term T cell lines reflect CD8+ 

T cell responses, lysis of DENV-infected cells by CD4+ T cells has also been 

demonstrated.  These CD4+ cells lysed DENV peptide-pulsed target cells by a perforin-

mediated mechanism and also lysed bystander cells through Fas-FasL interactions 

(Gagnon, Ennis et al. 1999).  These latter interactions may contribute to the hepatocyte 

damage seen in dengue (Burke 1968; Ishak, D.H. et al. 1982).   

 

Immune responses to secondary dengue virus infection 

As noted above, evidence has suggested that secondary DENV infections are a 

risk factor for developing DHF/DSS.  Memory immune cells generated from the primary 

DENV infection have been shown to modulate the immune response upon heterologous 

secondary DENV infection, suggesting that the pathology seen in secondary infection is 

immunologically mediated.  Both antibody and T cell responses have been postulated to 

contribute to this phenomenon. 

Antibody Dependent Enhancement (ADE) 

Several studies have shown that viral burden was correlated with disease severity 

(Murgue, Roche et al. 2000; Libraty, Endy et al. 2002).  Earlier, it was observed that 

DENV can replicate to a higher titer in PBMC from DENV-immune patients compared to 

PBMC from DENV-naïve individuals (Halstead, Nimmannitya et al. 1967).  DENV-

specific antibodies in the sera of the immune patients caused this increased viral 

replication.  This phenomenon was designated antibody dependent enhancement (ADE) 

(Halstead, Nimmannitya et al. 1967).   ADE is caused by anti-envelope antibodies 

resulting from a primary infection that are cross-reactive but non-neutralizing to the 
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secondary infecting virus. These antibodies bind the secondary virus and enhance its 

uptake into cells through the FcR receptor, potentially leading to increased viral load. 

ADE has been proposed as an immunopathogenic mechanism for DHF (Halstead, 

Nimmannitya et al. 1967).  

Several in vitro studies have demonstrated a link between ADE and dengue 

disease.  Kliks et al, demonstrated that serum from mothers of infants with DHF 

contained anti-DENV antibodies that enhanced infection of monocytes in vitro (Kliks, 

Nimmanitya et al. 1988).  Also, the age when the infant fell sick with DHF correlated 

with the amount of antibody acquired from the mother.  When DHF occurs during a 

primary DENV infection, it is primarily in infants six to twelve months of age whose 

mothers have been previously infected by DENV.  In contrast, between the years of one 

and three, DHF is very rare during primary infection.  This is a time window in which 

any antibody passed from the mother would no longer be present (Kliks, Nimmanitya et 

al. 1988).  Seropositive infants infected with DENV under the age of three months were 

asymptomatic and were protected from disease.  Another report by Kliks et al showed 

that pre-infection sera from immune Thai children who later had DHF enhanced DENV 

infection of monocytes in vitro, whereas sera from children that had less severe dengue 

disease were unable to enhance infection (Kliks, Nisalak et al. 1989). 

In contrast, Laoprasopwattana et al also found that pre-illness plasma from Thai 

children enhanced DENV infection in vitro in K562 cells; however, no correlations were 

found between the ability of patient pre-secondary infection plasma samples to enhance 

viral infection and disease severity (Laoprasopwattana, Libraty et al. 2005).  

Laopraspwattana et al also measured antibody-dependent cellular cytotoxicity (ADCC) 
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mediated by these pre-illness plasma samples (Laoprasopwattana, Libraty et al. 2007). 

They demonstrated that ADCC activity of the plasma inversely correlated with the 

viremia levels in the patients undergoing DENV-3 infection, but not in those undergoing 

DENV-2 infection.  Taken together, these studies suggest that pre-existing antibodies 

modify secondary DENV infections; however, controversy remains in whether these 

effects are pathogenic or protective. 

Cross-reactive T Cell Immunity 

 The principle of original antigenic sin describes a situation in which cross-

reactive memory immune cells generated from a primary infection alter the immune 

response during secondary infection (Francis 1953; Klenerman and Zinkernagel 1998).  

Specifically, it is hypothesized that lower avidity memory T cells can dominate the 

immune response over naïve T cells with higher avidity for the virus causing the 

secondary infection.  The presence of cross-reactive T cells after primary DENV 

infections is, therefore, an implicit assumption in this model.  DENV-specific CD4+ and 

CD8+ T cells have been detected in PBMC of patients after primary infection (Bukowski, 

Kurane et al. 1989).  In vitro experiments showed that, though the predominant responses 

of the PBMC were to the homologous infecting serotypes, cross-reactive responses were 

found in all samples (Kurane, Innis et al. 1989).  Kurane et al and Mathew et al also 

demonstrated the existence of DENV serotype-crossreactive T cells, the majority of 

which recognized nonstructural DENV proteins, especially NS3 (Kurane, Meager et al. 

1989; Mathew, Kurane et al. 1996).  Mathew et al also reported that, after secondary 

DENV infections, the majority of the DENV-specific memory T cells were serotype-

cross-reactive and recognized nonstructural proteins (Mathew, Kurane et al. 1998).   
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Many reports have provided in vitro evidence for modulated immune responses 

during a secondary DENV infection.  Mongkolsapaya et al demonstrated original 

antigenic sin in vivo for dengue by staining PBMC obtained during acute DENV 

infection with tetramers of HLA class I molecules loaded with variant peptides for each 

DENV serotype (Mongkolsapaya, Dejnirattisai et al. 2003).  More CD8+ T cells stained 

with tetramers matching a heterologous serotype than stained with the tetramer 

corresponding to the currently infecting virus.  This evidence suggests that the majority 

of cells responding were not specific to the secondary infecting virus but were 

crossreactive memory T cells generated during the earlier primary infection.  In addition, 

it has been demonstrated that cross-reactive CD8+ T cells could mount a cytolytic 

response in vitro to variant peptides from other serotypes (Kurane, Innis et al. 1989).  

Other studies have shown that CD4+ cells from DENV-immune donors produced more 

IFNγ in response to peptides from the homologous serotype, but that the ratio of TNFα- 

to IFNγ-producing cells was greater in response to heterologous serotypes (Mangada and 

Rothman 2005).  In addition, HLA-A2-restricted CD8+ T cells from vaccinees who 

received primary immunizations with different serotypes showed different IFNγ, TNFα, 

and MIP-1β cytokine profiles depending on which variant peptide was used for 

stimulation in vitro (Bashyam, Green et al. 2006).  This in vitro evidence demonstrated 

that priming with one serotype can alter the response to another serotype.  A particular 

peptide in this study, specifically a DENV-3 variant, proved to be immunodominant 

regardless of the serotype that the donor was infected with.  These data provide evidence 

for a scenario where antigen from the secondary infecting virus could be immunogenic to 

memory cells generated from a primary infection regardless of serotype.  These studies 
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also offer substantiation for the concept that a particular sequence of heterologous 

infection may influence the resulting immune response, supporting the epidemiologic 

observations that the serotype sequence of infection can influence dengue disease 

(Sangkawibha, Rojanasuphot et al. 1984).  

 

Mechanisms of immunopathology in dengue hemorrhagic fever 

 Although potentially life-threatening, DHF is a self-limiting disease and generally 

causes no long-term damage.  Therefore, vascular leakage in DHF is probably caused by 

functional rather than destructive effects on the endothelial cells.  Several studies have 

thus investigated the effect of the dengue-induced immune response on endothelial cells.  

Though direct infection of endothelial cells in vivo is still debated, it has been shown that 

endothelial cells may be infected with DENV in vitro and as a result produce the pro-

inflammatory cytokines IL-8, RANTES, and IL-6 (Avirutnan, Malasit et al. 1998; Spain-

Santana, Marglin et al. 2001; King, Anderson et al. 2002; Lee, Su et al. 2007).  Changes 

in the cytoskeletal structure and expression of adhesion molecules were observed in 

endothelial cells upon infection (Talavera, Castillo et al. 2004).  These cells were also 

more permeable to small molecules.  Addition of a blocking anti-IL-8 antibody was able 

to partially reverse the IL-8 induced effects on the cells.  Infection of human umbilical 

vein endothelial cells (HUVEC) with dengue virus in the presence of dengue immune 

sera resulted in the activation of complement (Avirutnan, Malasit et al. 1998).  Cardier et 

al, reported that in vitro the presence of serum from dengue infected patients caused 

activation and apoptosis of endothelial cells (Cardier, Marino et al. 2005).  This 

phenomenon could be reversed with the addition of anti-TNFα antibody.  Anti-DENV 
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NS1 antibodies can also bind HUVEC and induce the production of IL-6, IL-8, and 

MCP-1 (Lin, Chiu et al. 2005).   These data suggest that inflammatory molecules induced 

as a result of DENV infection may cause an increase in permeability of bystander 

endothelial cells seen in DHF. 

 T cells have also been implicated in the inflammation seen in secondary DENV 

infections.  Many markers of T cell activation and inflammation have been shown to be 

elevated in patients with increased disease severity.  Studies by Green et al, Hober et al,  

and Kurane et al found elevated serum levels of TNFα, soluble IL-2 receptor, soluble 

CD8, soluble CD4 and soluble TNFRII in patients with DHF as compared to those with 

less severe DF.  In addition, the highest levels of soluble TNFRII occurred two days 

before the appearance of plasma leakage, supporting the notion of a role for T cell 

activation in the genesis of DHF (Kurane, Brinton et al. 1991; Hober, Poli et al. 1993; 

Green, Vaughn et al. 1999).  Bethell et al strengthened these results by showing that there 

were even higher levels of sTNFRII in patients with DSS than in patients with less severe 

DHF without shock (Bethell, Flobbe et al. 1998).  Mangada et al demonstrated that there 

was an association between in vitro TNFα production of pre-illness PBMC to DENV 

antigens and more severe disease in subsequent infection (Mangada, Endy et al. 2002).  

These studies provide strong evidence that the increased risk of severe dengue disease 

upon secondary DENV infection is due to an immunopathological mechanism involving 

increased T cell activation and production of inflammatory cytokines. 
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Status of vaccine development against dengue 

 Secondary infection as a risk factor for DHF, plus the strong evidence for an 

immunopathological mechanism for DHF, present a significant hurdle for generating a 

vaccine against dengue.  To help circumvent this complication, tetravalent vaccines 

directed against all four serotypes have been the focus of several groups (Halstead 2002).  

Clinical trials on two of these vaccines, resulted in 80 - 90% seroconversion to all four 

DENV serotypes, but the levels of immunity induced may not be enough to provide long-

lasting protection (Halstead 2002).  

Chimeric flaviviruses have also been under development for dengue vaccines.  

One such tetravalent vaccine uses the Yellow Fever virus strain 17D as a backbone and 

replaces the preM and E genes with those from DENV.  The results from the chimeric 

vaccines have been encouraging, and neurovirulence tests in mice were negative.  

However, in primates, some serotypes induced a lower neutralizing antibody response 

than others. In addition, there was animal to animal variation with respect to their 

responses to the individual serotypes (Guirakhoo, Pugachev et al. 2004).  Other chimeric 

vaccines have employed a DENV-2 or DENV-4 backbone and replaced the preM and E 

genes with those of other serotypes (Blaney, Sathe et al. 2007).  Several of these vaccines 

have shown promise in animals by showing an attenuated phenotype compared to the 

wild-type viruses and also appear to confer protection in several murine models (Blaney, 

Sathe et al. 2007). 

Plasmid vaccines have also been studied for DENV as well as for other 

flaviviruses such as Japanese encephalitis, Murray Valley Encephalitis, Tick Borne 

Encephalitis and louping ill viruses. These plasmids encode preM and E.  Coexpression 
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of preM and E is required for correct folding of E, and also leads to secretion of virus-like 

particles, which may increase the immunogenicity of the vaccine (Timofeev, Butenko et 

al. 2004).    

 The nonstructural protein NS1 is another interesting choice for vaccine design.  It 

has been shown to elicit an antibody response.  In addition, antibodies directed against 

NS1 also has been demonstrated to induce a potent complement-mediated virus 

inactivation activity (Schlesinger, Brandriss et al. 1987).  Vaccine studies using NS1 

from Tick Borne Encephalitis virus in a murine model have induced a high-titer 

protective antibody response (Jacobs, Stephenson et al. 1994).  However, anti-DENV 

NS1 antibodies have been shown to be cross-reactive to cell surface proteins in the walls 

of blood vessels (Lin, Lei et al. 2002).  Therefore, a vaccine targeting NS1 could induce 

anti-NS1 antibodies that may be more harmful than protective.   

A successful vaccine for DENV will most likely be tetravalent.  That is, eliciting 

an immune response to all four serotypes simultaneously.  This concurrent response to all 

four viruses is thought to prevent any immunopathology from occurring.  Efforts to 

design such vaccines have included chimeric and plasmid vaccines, since such vaccines 

have the potential to tailor the immune response towards specific immunogenic 

molecules.  They also are able to include these viral molecules from several serotypes in 

one reagent, potentially resulting in the desired tetravalent response.  Results from 

vaccine studies have appeared promising.  However, challenges remain for developing a 

vaccine that both induces equal immunity to all four serotypes and confers life-long 

immunity.   
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Murine models of dengue infection 

 The clinical studies described above have shown the existence of DENV 

serotype-cross-reactive memory T cells and also increased T cell activation and cytokine 

production in patients with acute dengue disease.  However, there are limitations intrinsic 

to these human studies.  In most patients with secondary DENV infections, the serotype 

of the previous infection is unknown; this could complicate interpretation of the immune 

response to the current DENV infection.  Prior exposure to other flaviviruses is also not 

usually known.  As a result, the influence of a specific serotype as the primary infection 

on the immune response directed to the secondary infection cannot be determined.  

Finally, different HLA genotypes influence the susceptibility of the patients to disease 

and these differences may complicate the analysis of data compiled from patients with 

different HLA types.  Therefore, it is important to examine sequential infections in a 

system that minimizes these confounding factors.  An animal model would be useful to 

examine the immune response to secondary DENV infections, since the history of viral 

infection could be controlled.  A murine system would also be beneficial since the history 

of viral infection could be controlled.  In addition, the use of inbred mouse strains would 

control for the influence of genetic factors on study outcomes, since HLA-type in humans 

appear to affect disease outcome.   

 Many mouse models have been utilized to study DENV infection, involving both 

immunodeficient and immunocompetent mice.  Table 1 summarizes the major features of 

each of these models, which are discussed below. 
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Immunocompetent Mouse Models 

Several immunocompetent murine models have been developed to study dengue.  

Huang et al infected immunocompetent Balb/c, C57Bl/6, and A/J mice with a high titer 

of DENV-2 strain PL046 intravenously, which caused transient thrombocytopenia in the 

animals (Huang, Li et al. 2000).  Atrasheuskaya et al infected Balb/c with 5LD50 ip. of 

mouse-adapted DENV-2 strain P23085.  These animals exhibited anemia, 

thrombocytopenia, pre-terminal paralysis, shock, and death (Atrasheuskaya, Petzelbauer 

et al. 2003).  A one-hundred percent mortality rate was reported.  There were increased 

serum levels of TNFα, IL-1β, IL-6, IL-10, IL-1R antagonist and soluble TNFRI.  The 

addition of an anti-TNFα antibody decreased the mortality by 60%.  Shresta et al 

intravenously infected A/J mice, also with a high titer (107.5 pfu) of DENV-2 strain 

PL046 (Shresta, Kyle et al. 2004).  However, the normal phenotype of A/J mice includes 

a lower number of NK cells and lower NK cell activity than other strains, as well as a 

deficiency in complement component C5.   The authors reported that 55% of infected 

mice developed paralysis, the presence of DENV in the central nervous system, and an 

elevated hematocrit and white blood cell count.  They also noticed increased numbers of 

CD69+ NK cells and B cells, an IgG and IgM response, and also an elevation in 

splenocyte production of IFNγ.  Chen et al infected C57Bl/6 mice with a high titer (108 

pfu) of DENV-2 strain 16681 intravenously (Chen, Lai et al. 2004).  They observed 

elevated serum liver enzyme levels and lymphocyte infiltration into the liver. A 

homologous secondary DENV infection was given seven days after the initial infection 

and an increase in the clinical and biochemical signs of liver injury followed.  The 

kinetics of liver injury correlated with T cell activation; serum liver enzyme elevation and 
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the appearance of apoptotic hepatocytes occurred on days 3, 5, and 7, the same days in 

which the numbers of activated T cells were high.  Paes et al conducted histological 

studies showing that some liver damage occurred after infection of Balb/c mice with a 

DENV-2 strain from a Rio de Janeiro outbreak (Paes, Pinhao et al. 2005).  This damage 

included apoptotic cells, necrotic hepatocytes and steatosis. They also showed an increase 

in liver enzymes.  Barth et al reported that intraperitoneal infection with 104 TCID50 of 

the Rio de Janeiro DENV-2 strain led to transient liver inflammation and multifocal 

endothelial injury (Barth, Barreto et al. 2006).  Most recently, Barreto et al infected 

Balb/c mice intraperitoneally or intravenously with the Rio de Janeiro strain of DENV-2 

(Barreto, Takiya et al. 2007).  The mice demonstrated transient inflammation of the lungs 

by histological study. Using electron microscopy, they found that the endothelial cells of 

the animals’ capillaries exhibited phyllopodia, suggesting their activation.  The results 

from these immunocompetent mouse models of dengue infection correlated pathology 

with immune activation.   

Immunodeficient Mouse Models 

 A significant number of murine models employed immunodeficient mice.  

Several models utilized mice with severe combined immunodeficiency (SCID).  SCID 

mice are from the C.B-17 inbred strain (Balb/c C57Bl/Ka-Igh-1b/Icr N17F34) and lack 

functional T and B cells due to a mutation of the protein kinase, DNA activated, catalytic 

polypeptide gene (Prkdc) located on chromosome 16.  Wu et al showed that some SCID 

mice engrafted with human peripheral blood lymphocytes became viremia after they 

were injected with DENV-1 (Wu, Hayes et al. 1995).  Lin et al used K562 cells, a human 

myeloid cell line, as a graft in SCID mice; upon infection with 107 pfu DENV-2 strain 
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PL046 i.p., paralysis was seen and correlated with viremia (Lin, Liao et al. 1998).  An et 

al found that, after engraftment with HepG2 cells, a human liver cell line, and i.p. 

infection with DENV-2 strain Tr1751, mice at first showed the highest viral titers in the 

serum and liver (An, Kimura-Kuroda et al. 1999).  Later, on day 12 post infection when 

paralysis was seen, the highest viral titers were in the serum and brain.  The animals also 

exhibited thrombocytopenia, and increases in hematocrit and blood urea nitrogen levels.  

Elevated TNFα was also found in the paralyzed mice.  A more recent report by Bente et 

al used non-obese diabetic (NOD)-SCID mouse strain and reconstituted the animals with 

human CD34+ cells from human cord blood (Bente, Melkus et al. 2005).  After infection 

with 107.7 pfu DENV-2 strain K0049, mice developed fever, rash and thrombocytopenia.  

These humanized mouse models demonstrated the pathological effect of dengue in 

relation to human tissues. 

 Immunodeficient mice other than SCID have also been used.  Johnson and 

Roehrig infected AG129 mice, an IFNα/β/γ receptor knockout strain on the 129Sv(ev) 

mouse strain background, with 1 x 106 pfu DENV-2 strain 16681 i.p. (Johnson and 

Roehrig 1999).  The infection caused hind-leg paralysis and blindness and was eventually 

lethal in these mice, thereby providing evidence of the necessity of IFN for viral 

clearance in mice.  Shresta et al performed extensive work in dengue mouse models.  

Two of these reports also utilized AG129 mice.  The first demonstrated that these mice 

were susceptible to DENV-induced elevation of hematocrit, paralysis, and death.  Since 

AG129 lack the interferon receptors, both studies solidified the importance of IFNα/β 

and IFNγ for controlling and clearing the infection.  Mice deficient in CD4+ and CD8+ T 

or B cells were not susceptible to DENV (Shresta, Kyle et al. 2004).  Shresta et al also 
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performed experiments analyzing the importance of STAT-1 in DENV infection (Shresta, 

Sharar et al. 2005).  Using mice deficient in STAT-1, they found that a STAT-1-

dependent mechanism was required for clearing the initial viral load after infection with a 

high titer of DENV.  However, they also provided evidence that a STAT-1-independent 

mechanism was essential for controlling viremia and preventing disease, seen in this 

study as paralysis.  Another study involving AG129 mice used a new mouse adapted 

DENV-2 strain, D2S10, isolated by alternately passing the virus between mosquito cells 

and AG129 mice (Shresta, Sharar et al. 2006).  Infection with this virus was lethal at an 

earlier time point and resulted in the production of large amounts of TNFα.  Death 

appeared to be TNFα mediated since blocking this cytokine reduced mortality.  These 

murine studies reported a mechanism by which the immune system controls DENV and 

DENV-induced disease, specifically the importance of both type 1 and type 2 interferons. 

Murine T Cell Responses to Dengue 

 Several studies in mouse models specifically examined the T cell response to 

DENV.  Rothman et al defined a Kd-restricted NS3 epitope and an Ld-restricted E epitope 

recognized by CD8+ T cell clones generated from DENV-2-infected mice (Rothman, 

Kurane et al. 1996).  Spaulding et al isolated a T cell clone from a DENV-3-infected 

mouse that recognized the DENV-3 variant of the NS3 epitope (Spaulding, Kurane et al. 

1999).  Using cytotoxicity assays, they demonstrated that DENV-2 NS3-specific T cell 

clones were not cross-reactive to the DENV-3 variant; however, the DENV-3 specific 

clone was cross-reactive and recognized the DENV-2 variant.  These variant NS3 

peptides differed by only one amino acid at a non-anchor residue.  Van der Most et al 

immunized Balb/c mice subcutaneously with a chimeric yellow fever/dengue virus and 
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then challenged the mice 14 days later with 100LD50 DENV-2 strain New Guinea C 

(NGC) intracranially (van Der Most, Murali-Krishna et al. 2000).  They observed a high 

frequency of DENV-specific activated CD8+ T cells in the central nervous system using 

intracellular cytokine staining for IFNγ.  The chimeric virus vaccination protected the 

mice against lethal dengue encephalitis.  In a study by An et al using Hep-G2 cell 

engrafted SCID mice, mice were infected with DENV-2 with or without adoptive transfer 

of DENV-specific CD8+ T cell clones (An, Kimura-Kuroda et al. 1999).  Mice that 

received CD8+ T cells had decreased mortality when compared to mice receiving DENV-

2 and naïve thymocytes (80% vs. 100%).  However, deaths occurred five days earlier in 

mice that received DENV-specific T cells.  These findings provided evidence for both 

pathogenic and protective roles for DENV-specific T cells.  These T cell studies 

demonstrated the induction of serotype-crossreactive DENV-specific T cells by primary 

DENV infection in mice and also potential protective and pathogenic roles of these cells 

upon secondary DENV infection. 

 The murine models described above provided valuable observations regarding the 

immune response to DENV and the potential role of immune activation in dengue 

disease.  It was determined that interferons are essential for viral clearance. In addition 

evidence was presented suggesting that TNFα causes disease manifestations in DENV 

infection.  It was also shown that vaccination with DENV structural proteins protected 

animals from disease upon DENV challenge.  However, these systems have limitations.  

The majority of the studies using immunocompetent mice utilized high titers of virus for 

immunization.  In comparison, the amount of DENV thought to be inoculated by Aedes 

aegypti mosquito in natural infections is on the order of 104 pfu (Gubler 1989).  In 
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addition, the majority of disease signs seen in these animals are neurologic, which has 

little clinical relevance to human infections.  Similarly the use of mice with 

immunodeficiencies results in a system that is somewhat artificial.  Since one postulated 

mechanism for severe dengue disease involves an immunopathological response, a 

murine model with an intact immune system is necessary to study this phenomenon.  

Lastly, none of the mouse models used heterologous secondary DENV infections to 

examine the effect of DENV-specific memory T cells on the immune response to 

secondary infection; as noted earlier, this is a proposed immunopathological mechanism 

for dengue disease. 

 

Thesis objectives 

     Human studies have shown the existence of serotype-cross-reactive memory T cells 

and also increased T cell activation and cytokine production in patients with acute dengue 

disease.  However, no direct evidence has been reported that serotype-crossreactive 

memory T cells are activated to augment the T cell response.  Although many mouse 

models had been established to examine the immune response in DENV virus infections, 

the response to sequential DENV infections had not previously been described.  We 

therefore developed an immunocompetent mouse model to examine the immune 

responses to heterologous secondary DENV infections and demonstrate the role of cross-

reactive memory T cells in this response. We hypothesized that the T cell responses in 

heterologous secondary DENV infections are enhanced compared to the acute and 

memory response to primary DENV infection. Further, we hypothesize that the 

augmentation of the immune response in secondary DENV infections is due to 
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serotype-cross-reactive memory T cells and also results in a change in the hierarchy 

of epitope immunodominance.  This work is presented in two parts: 

 

Chapter III: Cross-reactive Memory CD8
+ 

T cells Alter the Immune Response to 

Heterologous Secondary Dengue Virus Infections in Mice in a Sequence-Specific 

Manner 

 a. Kinetics of IFNγ responses to primary and secondary dengue virus infections in mice 

 b. The magnitude and specificity of the T cell response to secondary dengue virus 

infections and sequence dependency 

 c. Memory T cells are preferentially activated during heterologous secondary dengue 

virus infections 

 d. Enhanced TNFα production following heterologous secondary dengue virus 

infections 

 e. Altered specificity of cytokine and cytotoxic responses after secondary challenge 

 

Chapter IV: Sequence-Specific Augmentation of the Dengue-Specific Memory CD8+ 

T Cell Response by Memory CD4+ T Cells  

a. Difference in magnitude of the CD4+ T cell responses in secondary DENV-1 versus 

secondary DENV-3 infections 

 b. Influence of memory CD4+ T cells on the memory CD8+ T cell response 

 c. Activation of cross-reactive memory CD4+
 T cells by heterologous antigen 
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CHAPTER II 

 

MATERIALS AND METHODS 

A. Viruses 

 DENV-1 strain Hawaii, DENV-2 strain New Guinea C (NGC), DENV-3 strain 

CH53489, and DENV-4 strain 814669 were used in our experiments.  All viruses were 

propagated in C6/36 mosquito cells and their titers were determined by plaque assay in 

Vero cells. 

 

B. Peptides 

 H-2Kd-restricted NS3 and H-2Ld-restricted E epitopes were previously 

characterized by our laboratory (Rothman, Kurane et al. 1996).  Peptides with amino acid 

sequences corresponding to each epitope for each serotype were synthesized at the 

University of Massachusetts Peptide Core Facility (Table II-1).  The amino acid 

sequences for the NS3 epitope in DENV-1 and DENV-3 are identical as are DENV-2 and 

DENV-4, and the respective peptides are referred to as D1/3 NS3 and D2/4 NS3.  The 

peptides corresponding to the E epitopes for each serotype are referred to as D1E, D2E, 

D3E, and D4E.   

 

C. Preparation of dengue antigens 

 Lysates of DENV-infected Vero cells were prepared as previously described 

(Mangada and Rothman 2005). Vero cell monolayers were infected with either DENV-1, 

DENV-2, DENV-3, or DENV-4.  The cells were incubated until >50% of the cells 
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Table II-1. K d- and  Ld- restricted dengue epitopes used in this studya 

 

Peptide MHC Serotype Sequence 

NS3 (298-306) Kd D1/3 GYISTRVGM 

  D2/4 GYISTRVEM 

      

E (331-339) Ld D1 APCKIPFSS 

  D2 SPCKIPFEI 

  D3 APCKIPFST 

  D4 APCKVPIEI 

 

aAnchor residues are shown in bold; differences in amino acid sequence between serotypes for each epitope

 is shown in italics. 
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showed cytopathic effect.  The cells were harvested and fixed by treatment with 0.025% 

gluteraldehyde for 15 minutes at 4o C.  The cells were then sonicated on ice followed by 

centrifugation.  The supernatants were harvested and stored at -70°C.  Control antigen 

was made from uninfected Vero cells. 

 

D. Immunization  

 Balb/c mice 4-6 weeks of age were purchased from Jackson Laboratories (Bar 

Harbor, ME) and immunized with 2 x105 pfu ip. of DENV or an equivalent volume of 

C6/36 culture supernatant.  For secondary infection, mice were immunized 28-56 days 

after the primary infection with 2 x 105 pfu ip. of heterologous or homologous DENV 

serotypes.  At the indicated time points, mice were sacrificed and splenectomized.  Single 

cell suspensions were made.  All mice were maintained in the Animal Facility at the 

University of Massachusetts Medical School, which is regulated by AWA-1995, PHS-

1986, and MA140-1985, following the American Association for the Accreditation of 

Laboratory Animal Care 1965 guidelines. 

 

E. Cell line generation 

 Splenocytes were placed in a T25 flask at a concentration of 5x106 cells per 

milliliter in RPMI 1640 medium with 10% fetal bovine serum and 14.3 mM β-

mercaptoethanol.  Recombinant murine IL-2 (50 U/ml) and peptide (10μg/mL) or DENV 

antigen (1:100 final dilution) were also added.  Every 14 days, peptide-stimulated cells 

were restimulated with 10μg/mL of peptide and γ-irradiated (3500 rads) P815 cells. 
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F. IFN-γ ELISPOT 

 Peptide-specific IFNγ-secreting T cells were quantified by ELISPOT.  Briefly, 

wells of 0.45 μm filter plates (Millipore) were pre-coated with purified anti-mouse IFN-γ 

mAb (AN18, Mabtech) in PBS overnight.  2.5 x 105 splenocytes per well were incubated 

overnight with 4 μg/mL peptide, 5μg/mL concanavalin A (Sigma-Aldrich), or medium 

alone.  Wells were washed between each step with phosphate buffered saline (PBS). 

Biotinylated anti-mouse IFN-γ mAb (R4-6A2, Mabtech) was added and incubated at 

room temperature for 2 hours.  After washing, streptavidin-horseradish peroxidase 

(Mabtech) was added and incubated at room temperature for 1 hour.  After further 

washes, Nova Red substrate solution (Vector Laboratories) was added and incubated for 

15 minutes at room temperature.  The plate was then washed with tap water.  Plates were 

allowed to dry and spots were counted either manually or by CTL Immunospot ELISPOT 

plate reader.  All data shown represent values in which the medium control backgrounds 

were subtracted.  The median background value was 7 spot forming cells (SFC) per 

million splenocytes. 

 

G. Intracellular cytokine staining 

 Peptide-specific IFNγ and TNFα-secreting T cells were quantified by intracellular 

cytokine staining (ICS) assay as described (Mangada and Rothman 2005).  Briefly, 5 x 

105 splenocytes were incubated with 10 μg/mL peptide, PMA/Ionomycin, or medium 

alone with 5 μL/mL  Brefeldin A (GolgiPlug, BD Bioscience) for 5 hours at 37o C.  Cells 

were washed twice with FACS buffer (2% FBS and 0.1% sodium azide in PBS).  Anti-

CD16/CD32 (2.4G2, BD Bioscience) was added and the samples were incubated at 4o C 
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for 15 minutes.  Anti-mouse CD3ε - PerCP (145-2C11, BD Bioscience) and anti-mouse 

CD8α-FITC (5.3-C711, eBioscience) were added and the samples were incubated at 4oC 

for 30 minutes.  Cells were washed. Cytofix/Cytoperm buffer (BD Bioscience) was added 

to each sample and incubated at 4oC for 20 minutes. Cells were washed twice with 

Perm/Wash buffer (BD Bioscience).  PE-conjugated anti-mouse TNF-α (MP6-XT22, 

eBioscience) and/or APC-conjugated IFN-γ (XMG1.2, eBioscience) was added and the 

samples were incubated at 4oC for 30 minutes.  Cells were washed with Perm/Wash and 

were resuspended in FACS Buffer.  Data were acquired by the Flow Cytometry Core 

Laboratory at the University of Massachusetts using a FACSCalibur and analyzed using 

FlowJo software (Tree Star).  A small lymphocyte gate was drawn on forward and side-

scatter low populations and further gated on CD3+ CD8+ cells.  The frequencies of 

cytokine-positive cells from samples cultured with medium alone were subtracted from 

those of samples stimulated with peptide. 

 Intracellular cytokine staining of cells stimulated with antigen was performed as 

above with a few modifications.  Cells were stimulated overnight with a 1:20 dilution of 

viral antigen or control vero antigen in the presence of 5 μL/mL each of Brefeldin A and 

monensin.  The frequencies of cytokine-positive cells from samples cultured with control 

vero cell antigen were subtracted from those of samples stimulated with viral antigen. 

 

H. 51Cr Release Assays 

 P815 Target cells were labeled with 10μL (250 μCi) of  51Cr for one hour at 37oC.  

After labeling, cells were washed three times, followed by incubation with 10mg/mL of 

peptide for 30 minutes in a 96-well round bottom plate.  Effector cells were added to 2 x 
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103 target cells per well at an effector to target ration of 50:1.  The cells were incubated 

for 4 hours at 37oC, and then supernatants were harvested using the Skatron supernatant 

collection system.  The amount of 51Cr released was measured in a gamma counter.  

Percent specific lysis was measured by the following equation:  (cpm experimental 

release – cpm spontaneous release)/(cpm maximum release – cpm spontaneous release) x 

100.  Spontaneous release values were obtained from supernatants from target cells 

incubated in medium without effectors.  Maximum release values were acquired from 

supernatants from target cells incubated with Renex detergent (1:20 dilution) without 

effectors.  All assays were performed in triplicate. 

 

I. Isolation of CD4+ and CD8+ T cells 

 CD4+ and CD8+ T cells were collected by negative selection through magnetic 

separation.  Splenocytes were isolated from DENV-2-immune mice and incubated with 

biotin-antibody cocktail (Miltenyi Biotec) followed by incubation with anti-biotin 

microbeads.  After washing with buffer (0.5% fetal bovine serum and 2mM EDTA in 

PBS pH 7.2), the cells were collected as the effluent when passed through an LS column 

(Miltenyi Biotec) in a MidiMACS separator (Milteni Biotec). 

 

J.  Adoptive Transfer 

 For whole splenocyte transfer, 2 x 107 Thy 1.2+ splenocytes from DENV-3-

immune Balb/c mice that were immunized at least 28 days prior or naïve Balb/c mice 

were transferred in 100 μL i.v. into congenic Thy 1.1+ Balb/c mice.  The next day, mice 
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were infected with 2 x 105 pfu DENV-2 i.p.  Day 9 post infection, mice were sacrificed 

and splenectomized. 

     For transfer of CD4+ and CD8+ T cells, 1 x 106 CD8+ T cells and/or 3 x 106 CD4+ T 

cells were transferred i.v. in a volume of 100μL into naïve Balb/c mice.  The following 

day, the mice were immunized with 2 x 105 pfu ip. of either DENV-1 or DENV-3.  Nine 

days later, the mice were sacrificed and intracellular cytokine staining was performed on 

their splenocytes. 

 

K. Thy 1.2+ cell depletion 

     Cells were incubated with Thy 1.2 microbeads (Miltenyi Biotec) at 4oC for 15 

minutes.  Cells were washed.  The cell suspension was applied to an LD depletion 

column (Miltenyi Biotec) in a MidiMACS separator (Miltenyi Biotec).   

 

L. Serum transfer 

     On day -1, naïve male Balb/c mice were passively immunized ip. with 200 μL of 

undiluted sera from DENV-3-immunized or control mice.  On day 0, mice were 

immunized with 2 x 105 pfu ip. DENV-2.  On day 9 post-infection, mice were sacrificed. 

 

M. Statistics 

     Medians, absolute deviations, confidence intervals, and standard errors were 

computed using SPSS and Microsoft Excel.  ELISPOT and ICS data were compared 

between groups using the Mann-Whitney test, ANOVA, and Tukeys pot hoc analysis; p 

values <0.05 were considered significant.  
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CHAPTER III 

 

CROSS-REACTIVE MEMORY CD8+ T CELLS ALTER THE IMMUNE 

RESPONSE TO HETEROLOGOUS SECONDARY DENGUE VIRUS 

INFECTIONS IN MICE IN A SEQUENCE-SPECIFIC MANNER 

Secondary DENV infection is a risk factor for DHF.  Extensive evidence points to 

immunopathology as a hypothesized mechanism for this phenomenon.  Due to limitations 

of human studies, an animal model would be useful to examine the immune response to 

secondary DENV infections.  Several mouse models have been utilized to study DENV 

infection.  In these cases either immunodeficient mice were used or immunocompetent 

mice were infected with a high DENV inoculum or infected intracranially (Lin, Liao et 

al. 1998; An, Kimura-Kuroda et al. 1999; Johnson and Roehrig 1999; Huang, Li et al. 

2000; van Der Most, Murali-Krishna et al. 2000).  In contrast, immunocompetent mice 

infected with lower doses of DENV by the intraperitoneal route remain disease-free but 

develop antibody and T cell responses that parallel human immune responses to primary 

infection.  However, the response to sequential DENV infections has not previously been 

described.  We infected immunocompetent Balb/c mice sequentially with low doses of 

heterologous serotypes of DENV.  We then examined IFNγ and TNFα induction by 

CD8+ T cells after infection. The effect of memory T cells and antibodies on the immune 

response was determined.   
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A. Kinetics of IFN-γ responses to primary and secondary dengue virus infections in 

mice 

 To understand the differences in the T cell response to DENV after primary and 

secondary infection, we first compared the kinetics of the immune response following 

primary or heterologous secondary dengue virus infection.  IFNγ ELISPOT assays were 

used to quantify the T cell responses in DENV-infected mice.  Mice were immunized 

with a primary DENV infection. On days 4 – 14 post infection, the splenocytes were 

assayed for IFNγ production in response to the previously identified NS3 and E epitopes 

corresponding to each serotype (Table II-1) (Rothman, Kurane et al. 1996).   The peak 

IFNγ ELISPOT response was seen between days 8 – 10 (Table III-1).  The highest 

overall response was seen after primary DENV-4 infection.  DENV-2 gave the next 

highest response, whereas DENV-1 and DENV-3 gave low responses.  The NS3 epitope 

was immunodominant compared to the E epitope in all immunization groups.  In 

addition, the D2/4 NS3 peptide elicited a larger response than the D1/3 NS3 peptide 

regardless of the infecting serotype (Figs. III-1 and III-2) .   

 Twenty-eight days after the primary infection, mice were boosted with a 

secondary infection of a heterologous DENV serotype.  Days 4 – 14 post infection, 

cytokine production of the splenocytes was measured.  Though the magnitude of the 

response was greater after secondary infection as compared to after primary infection, the 

timing of the peak response was similar, at 8 – 10 days post infection (Table III-1).  The 

NS3 epitope was immunodominant compared to the E epitope after secondary infection 

and the D2/4 NS3 peptide elicited a higher response than the D1/3 NS3 peptide.  
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Table III-1.  Kinetics of IFN-γ response to dengue epitopes following primary and secondary DENV-2 infection* 

   Median SFC / Million Splenocytes (Absolute Deviation) 

   Peptide 

  N D1/3 NS3 D2/4 NS3 D1 E D2 E D3 E D4 E 

Primary DENV-

2 

Days Post 

Infection 

       

 4 4 19 (11) 36 (15) <7 <7 <7 11 (11) 

 6 4 <7 67 (28) 81 (19) 16 (7) <7 57 (28) 

 8 3 10 (7) 177 (82) <7 71 (53) <7 83 (83) 

 9 4 <7 68 (24) <7 65 (74) <7 67 (42) 

 10 2 <7 265 (77) 23 (0) 65 (39) 12 (12) 59 (59) 

 14 3 <7 33 (74) <7 <7 <7 <7 

Heterologous 

Secondary 

DENV-2 

        

 4 4 <7 27 (45) 81 (27) 27 (13) <7 43 (34) 

 6 3 24 (21) 68 (39) 13 (14) 41 (32) 11 (19) 65 (34) 

 8 4 <7 <7 17 (27) <7 <7 17 (57) 

 9 3 291 (146) 584 (187) 79 (119) 99 (171) 104 (172) 233 (199) 

 10 4 <7 92 (68) 15 (12) 17 (17) <7 <7 

 14 4 <7 29 (18) 9 (8) <7 10 (11) 8 (10) 

 

* Data shown were compiled from two separate experiments 

38



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

D4V 

 
 
 
 
 

D3V 

 
 
 
 
 

D1V 

Primary Infection 

 
 
 
 
 

D2V 

Epitope 

D
1

M
em

D
1 

D
1  

D
1 

D
2

D
2    
 

D
1 

D
3

D
3

D
1 

D
4

D
4 

0

100

200

300

D
1

M
em

D
1 

D
1

   
   

   
   

   
   

   
   

   
   

   
   

D
1 

D
2

D
2

   
   

   
   

   
   

   
   

   
   

   
   

D
1 

D
3

D
3

   
   

   
   

   
   

   
   

   
   

   
   

D
1 

D
4 D
4

0

100

200

300

400

500
P = 0.089 

P = 0.064 

D
2

M
em

D
2 

D
2  

D
2 

D
1

D
1

   
  

D
2 

D
3

D
3

D
2 

D
4

D
4

0

100

200

300

400

500

P = 0.002 
P = 0.006 

D
2

M
em

D
2 

D
2

   
   

   
   

   
   

   
   

   
   

   
   

D
2 

D
1 D
1

   
   

   
   

   
   

   
   

   
   

   
   

   
 

D
2 

D
3

D
3

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

D
2 

D
4

D
4

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

P = 0.006 

P = 0.000 

D
3

M
em

D
3 

D
3  

D
3 

D
1

D
1

   
  

D
3 

D
2

D
2

D
3 

D
4

D
4 

0

100

200

300

400

500

P = 0.058 

P = 0.003 
P = 0.090 

D
3

M
em

D
3 

D
3

   
   

   
   

   
   

   
   

   
   

   
 

D
3 

D
1

D
1

   
   

   
   

   
   

   
   

   
   

   
 

D
3 

D
2

D
2

   
   

   
   

   
   

   
   

   
   

   
 

D
3 

D
4

D
4

0

100

200

300

400

500

600

700

P = 0.001 

P = 0.000 

P = 0.089 

D
4

M
em

D
4 

D
4  

D
4 

D
1

D
1

   
  

D
4 

D
2

D
2 

D
4 

D
3 

D
3 

0

100

200

300

400

500 P = 0.091 

P = 0.040 

D
4

M
em

D
4 

D
4

   
   

   
   

   
   

   
   

   
   

   
   

   

D
4 

D
1

D
1

   
   

   
   

   
   

   
   

   
   

   
   

   

D
4 

D
2

D
2

   
   

   
   

   
   

   
   

   
   

   
   

 

D
4 

D
3

D
3

0

100

200

300

400

500

600

P = 0.076 

P = 0.047 

P=0.006

P=0.052 

S
po

t F
or

m
in

g 
C

el
ls

 (S
FC

) /
 1

06  S
pl

en
oc

yt
es

 

D1/3 NS3 D2/4 NS3

Sequence of Infection

Figure 1 

FIGURE III-1.  IFNγ ELISPOT responses to the dengue virus NS3 epitope. Mice were administered 
sequential heterologous or homologous dengue virus infections as noted.  The IFNγ responses to the 
D1/3 NS3 (left column) and D2/4 NS3 (right column) peptides were measured 8-10 days post infection 
by ELISPOT.  The X axis represents the sequence of infection that the animals received.  For example, 
D1 D2 refers to mice that received a primary DENV-1 infection followed by a secondary DENV-2 
challenge.  ‘Mem’ indicates responses at 36-38 days after primary infection. All 16 potential sequences 
were tested; data for secondary infections are grouped by the primary serotype (listed on the left). Data 
for primary infections with each serotype are repeated in each graph for ease of comparison. The Y axis 
represents the ELISPOT responses in spot forming cells per million splenocytes.  Each point represents 
an individual animal; median values are noted by horizontal lines.  P values for the comparisons between 
different groups were calculated using the Mann-Whitney test.  P values < 0.10 are shown. 
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FIGURE III-2.   IFNγ ELISPOT responses to the dengue virus E epitope. Mice were 
administered sequential heterologous or homologous dengue virus infections as described.  
IFNγ responses to the D1E (leftmost column), D2E (second column), D3E (third column), 
and D4E (rightmost column) peptides were measured 8-10 days post infection by ELISPOT. 
Data are presented as described in the Figure III-1 legend.  N = 4 – 22 mice per infection 
group. 
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B. The magnitude and specificity of the T cell response to secondary dengue virus 

infections and sequence dependency 

 The model of original antigenic sin and data in humans suggest that prior 

infection with DENV generates memory cells that are cross-reactive to antigens from 

heterologous DENV serotypes (Halstead, Rojanasuphot et al. 1983; Mongkolsapaya, 

Dejnirattisai et al. 2003).  These memory cells would have a lower threshold of activation 

than naïve cells that are specific to the secondary infecting DENV and therefore would be 

expected to dominate the immune response to the secondary infection.  To determine 

whether sequential infections have similar effects on the immune response to DENV in 

this murine model, animals were sequentially infected with all combinations of two 

DENV serotypes.  On days 8-10 post primary infection, the splenocytes from subgroups 

of mice were analyzed in IFNγ ELISPOT assays.  The remaining mice were given a 

secondary immunization on day 28 post primary infection.  Days 8-10 post secondary 

infection, ELISPOT assays were performed to measure the immune response to the 

secondary infection. 

 Overall, heterologous secondary infection caused an increase in the frequencies of 

epitope-specific IFNγ-secreting cells compared to the response after primary infection 

(Fig. III-1).  However, the effect was sequence dependent.  For example, a boost in the 

immune response to all peptides tested was seen in the group of mice that received a 

primary infection with DENV-3 followed by a secondary infection with DENV-2.   These 

observations were not universal in all sequences and the epitope to which the boosted 

immune response was directed varied (Fig. III-1 and III-2).   
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 A change in the epitope hierarchy was also observed after heterologous secondary 

DENV infections.  The most striking example was the immune response to the D1/3 NS3 

epitope.  When mice were challenged with DENV-2 after a primary DENV-3 infection, 

the immune response to the D1/3 NS3 epitope was significantly increased when 

compared to the response during the memory phase after a primary DENV-3 

immunization (Fig. III-1).  Another such scenario occurred after a primary DENV-2 

infection followed by a DENV-1 challenge, where the immune response to the D2E 

epitope was boosted over that after a primary DENV-1 infection (Fig. III-2).  In both of 

these cases, the epitope to which the enhanced response was directed corresponded to the 

primary infecting serotype. 

 

C. Memory T cells are preferentially activated during heterologous secondary 

dengue virus infections 

 Since antibody dependent enhancement is a proposed mechanism of dengue 

immunopathology, we considered the possibility that pre-existing antibodies from the 

primary infection enhanced the secondary infection resulting in the boost in T cell 

response observed.  Therefore, we tested whether passive immunization of mice with 

DENV-immune sera would enhance the response to immunization with a heterologous 

serotype.  Mice were given sera from mice immunized with DENV-3 28 days prior and 

were challenged with DENV-2.  The IFNγ ELISPOT response was measured on day 8.  

The T cell response from mice that received the immune sera was lower than that from 

the mice that received the control sera (Fig. III-3).   The decrease in response after adding 

the sera could be the result of inhibition of infection by neutralizing antibodies in the 
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sera.  These data suggest that the boosted T cell response we observed after heterologous 

secondary infection was not due to enhanced antigen presentation by antibody-complexed 

virus.   

 These findings suggested that serotype-crossreactive epitope-specific memory T 

cells from the primary infection were being preferentially recalled during the 

heterologous secondary infection resulting in the boost of the immune response.   To 

determine if this were the case, DENV-3 immune or naïve Thy 1.2+ splenocytes were 

adoptively transferred intravenously into congenic Thy 1.1+ mice and the mice were 

infected with DENV-2.  Nine days later, the IFNγ response was measured by IFNγ 

ELISPOT and intracellular cytokine staining.  To distinguish between the donor and 

recipient cells’ response by ELISPOT, the splenocytes were depleted of the Thy 1.2+ 

donor cells prior to the assay.  The response of the depleted splenocytes was compared to 

the response of the undepleted splenocytes (Fig. III-4a).  Depleting the memory cells 

significantly decreased the response, showing that the memory cells were responsible for 

the majority of the immune response during secondary infection. 

 To directly compare the peptide-specific responses of donor and recipient T cells, 

intracellular cytokine staining (ICS) assays were done after the adoptive transfer using 

the Thy1 marker to distinguish the donor and recipient cells.   A significantly higher 

frequency of the donor CD8+ T cells responded to peptide stimulation than the 

endogenous CD8+ T cells.  Figure III-4b shows data from one animal that received 

DENV-3-immune Thy 1.2+ splenocytes prior to DENV-2 challenge.  In this figure, 0.6% 

and 1.3% of donor CD8+ T cells responded to D1/3 NS3 and D2/4 NS3, respectively, as 

compared to 0.11% and 0.17% of host CD8+ T cells.   Three adoptive transfer 
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FIGURE III-3.  T cell responses to dengue virus infection after passive 
immunization of mice with dengue virus-immune serum. Four- to six-week old 
male Balb/c mice were given 200 μL DENV-3-immune or naïve serum i.p. The 
following day, mice were infected with 2x105 pfu DENV-2 i.p. On day 8 post 
infection, the IFNγ response to the 6 peptides indicated was measured by ELISPOT.  
Median values (N = 4 per group) and 95% confidence intervals are shown.  P values 
were calculated by the Mann-Whitney test.  P values <0.05 are considered significant 
and those <0.10 are shown.  N = 4 mice per group 
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FIGURE III-4.  Preferential activation of donor dengue virus-immune splenocytes in dengue infection 
following adoptive transfer of splenocytes from DENV-3-immune mice. Thy 1.2+ Balb/c mice were infected 
with 2x105 pfu DENV-3 i.p. Splenocytes were isolated from mice 28 days post infection, and 2x107 cells were 
transferred i.v. to naïve Thy1.1+ congenic mice.  The following day mice were infected with 2x105 pfu DENV-2 ip.  
9 days post infection mice were sacrificed and their splenocytes were used in ELISPOT and intracellular cytokine 
staining (ICS) assays to examine peptide-specific IFNγ responses.  a. IFNγ ELISPOT responses. To determine the 
effect of memory cells on the response, Thy 1.2+ donor cells were depleted from splenocytes by magnetic cell 
separation prior to the ELISPOT assay.  The responses of depleted and undepleted cells were compared. Median 
values (N=4 per group) and 95% confidence intervals are shown.  b.  Intracellular cytokine staining for IFNγ of 
splenocytes following adoptive transfer.  Data were analyzed by gating on Thy 1.1+ (recipient) or Thy 1.2+ (donor) 
CD3+ CD8+ lymphocytes.  The frequency of CD8+ IFNγ+ cells was measured in the gated population. Data shown 
are representative of 3 experiments performed. c. Summary data for intracellular cytokine staining assays for all 
experiments performed. Horizontal lines represent median values.  P values were calculated using the Mann-
Whitney test.  P values <0.05 were considered significant and those <0.10 are shown.  N = 11 mice per group from a 
total of 3 experiments. 
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experiments (N=11 mice) yielded comparable results; the median frequencies of host 

CD8+ T cells responding to D1/3 NS3 and D2/4 NS3 were 0.05% and 0.2% respectively, 

and the median frequencies of donor CD8+ T cells responding to D1/3 NS3 and D2/4 

NS3 were 0.44% and 0.53%, respectively.  The difference in the frequency of CD8+ 

donor versus host cells secreting IFNγ in response to D1/3 NS3 was statistically 

significant (p = 0.016).  These results directly show that cross-reactive memory T cells 

were preferentially recruited during the secondary DENV infection. 

 

D. Enhanced TNF-α production following heterologous secondary dengue virus 

infections.  

 In human studies, TNF-α has been implicated in dengue immunopathology. Both 

DENV-infected cells and DENV-specific T cells have been shown to be capable of 

TNFα secretion (Mangada, Endy et al. 2002; Mangada and Rothman 2005).  We 

therefore determined whether there was an enhanced TNF-α response in mice after 

secondary infection when compared to primary infection using ICS (Fig. III-5).  Though 

not statistically significant, the frequency of TNFα+ CD8+ T cells was increased after 

heterologous secondary infection when compared to both the TNFα response during 

acute primary infection and also during the memory phase after primary infection.  This 

augmented response was seen after stimulation with all the DENV peptides tested.  These 

observations are similar to our findings on the IFNγ response, and indicate that serotype-

cross-reactive TNFα-producing memory T cells were expanded in secondary infection. 
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FIGURE III- 5.  Enhanced TNFα responses to heterologous secondary dengue 
virus infection.  Mice were infected with a primary or secondary dengue virus 
infection, as indicated. TNFα responses to the six peptides corresponding to the NS3 
and E epitopes were measured by intracellular cytokine staining 8-10 days post 
infection.   Data are presented as the percent of CD8+ CD3+ cells that were TNFα+.  
Each data point represents an individual mouse.  Diamonds, squares, and triangles 
represent mice that received primary DENV-2 infection, primary DENV-3 infection, 
or heterologous secondary DENV-2 infection, respectively.  Median values for each 
group are shown. P values were calculated by Mann-Whitney test.  All p values were 
greater than 0.05 and therefore not considered significant and not shown. N = 7 – 11 
mice per group from a total of 3 experiments. 
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E. Altered specificity of cytokine and cytotoxic responses of T cell lines generated 

after primary vs. secondary dengue virus infections. 

 Previous studies in dengue have described cross-reactive proliferative and 

cytotoxic responses.  Thus, we hypothesized that the cytokine response was not the only 

T cell effector function affected in the cross-reactive response to secondary infection.  

Therefore, we examined the serotype-cross-reactivity of the responding T cell 

populations in greater detail.  To generate a greater frequency of DENV-specific T cells, 

peptide-specific cells were expanded in vitro from mice with primary DENV-3 or 

DENV-2 infections or from DENV-3-immune mice that were challenged with DENV-2 

(secondary DENV-2 infection).  Splenocytes from each mouse were stimulated with 

peptide D1/3 NS3 or D2/4 NS3.  Five days post stimulation, chromium release assays 

were done to determine the killing activity and specificity of these cell lines.  Cell lines 

which were generated from splenocytes from mice with primary DENV-3 infection after 

stimulation with either D1/3 NS3 or D2/3 NS3 peptides showed very low specific lysis 

(Fig. III-6).  The low cytotoxic activity seen was comparable against target cells pulsed 

with either the D1/3 NS3 or D2/4 NS3 peptides.  This result correlated with ELISPOT 

results that indicated that primary DENV-3 immunization resulted in low IFNγ responses.  

Cell lines generated from mice that received primary DENV-2 after stimulation with 

D2/4 NS3 peptide preferentially killed targets pulsed with the D2/4 NS3 peptide over 

those pulsed with D1/3 NS3 (Fig. III-6), showing high specificity for DENV-2.  In 

contrast, cell lines that were generated from mice that received primary DENV-2 after 

stimulation with D1/3 NS3 showed equivalent lysis of targets pulsed with D1/3 NS3 

peptide or D2/4 NS3.  These data indicate that the majority of responding T cells in mice 
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with primary DENV-2 infection were specific for D2/4 NS3 but that a sub-population of 

DENV-2-specific T cells activated by primary DENV-2 infection was cross-reactive and 

able to be expanded in vitro with the heterologous peptide D1/3 NS3.  However, cell 

lines derived from mice that received primary DENV-3 followed by secondary DENV-2 

infection after stimulation with either peptide responded with lower but similar killing of 

targets pulsed with either D1/3 NS3 or D2/4 NS3 (Fig. III-6).  These results indicate that 

the populations of cells that were expanded in both of these cultures were cross-reactive.  

The magnitude and cross-reactivity of killing by cell lines generated from mice with 

secondary DENV-2 infection were similar to those of cell lines established from mice 

with primary DENV-3 infection, suggesting that DENV-3-specific T cells were cross-

reactively expanded by the heterologous infection in vivo.  These data suggest that the 

specificity of cytotoxic activity of DENV-specific T cells was altered in secondary 

DENV-2 infection as compared to primary DENV-2 infection.  

To further evaluate the serotype-crossreactivity of these T cell lines, the bulk 

cultures were also stained with H-2Kd-D1/3 NS3 and H-2Kd-D2/4 NS3 tetramers.  

Patterns of tetramer staining mirrored those of cytotoxic activity.  Bulk cultures 

established from mice that were administered primary DENV-3 had low but equal 

staining for both the D1/3 NS3 and D2/4 NS3 tetramers, suggesting cross-reactivity.  Cell 

lines generated from primary DENV-2-infected mice and stimulated with D1/3 NS3 

stained equally with the D1/3 NS3 and D2/4 NS3 tetramers.  The majority of the 

tetramer-positive cells were double stained with both tetramers, suggesting that these 

cells were cross-reactive.  (Fig. III-6 and III-7b).  Cultures from the same primary 

DENV-2-infected mice but stimulated with D2/4 NS3 had greater tetramer staining with 
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FIGURE III-7.  Representative tetramer staining of day 5 bulk culture T cell lines.  Bulk culture T 
cell lines were generated from mice that received either primary DENV-2 infection, primary DENV-3 
infection, or primary DENV-3 followed by secondary DENV-2 infection.  Each cell line was stimulated 
with either D1/3 NS3 or D2/4 NS3 peptide.  Five days post stimulation, lines were stained with Kd-D1/3 
NS3 and Kd-D2/4 NS3 tetramers.  Cells were gated on CD3+ CD8+ CD19- F4/80- small lymphocytes. (a). 
Representative single tetramer stain. (b). Representative double tetramer stain. 
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the Kd-D2/4 NS3 tetramer than the Kd-D1/3 NS3 tetramer, indicating the expansion of a 

DENV-2-specific population.  These tetramer staining data correlate with the specific 

lysis results and indicate that cells generated by D1/3 NS3 stimulation were more cross-

reactive than those stimulated with D2/4 NS3.  Finally, cultures from mice secondarily 

infected with DENV-2 had a low frequency of tetramer-positive cells, but the staining 

was comparable with both the Kd-D2/4 NS3 tetramer and the Kd-D1/3 NS3 tetramers. As 

with the lines from the primary DENV-3-infected mice, the majority of the tetramer-

positive cells were stained with both tetramers (Fig. III-7b).  Akin to the cytotoxicity 

data, the tetramer staining patterns of the secondary DENV-2 T cell lines were similar to 

those of the primary DENV-3 cultures, suggesting expansion of DENV-3-specific 

memory cells to heterologous stimulation.  These results are in agreement with our 

sequential infection data in that we had observed that memory cells generated during a 

primary DENV-3 infection were preferentially recruited to respond to antigen from a 

secondary DENV-2 challenge. 

To generate a broader picture of the functional profile of these cells, the cell lines 

were also assayed for cytokine secretion, namely IFNγ and TNFα.  Additional rounds of 

stimulation were required for expansion of enough cells for analysis.  After three 

additional rounds of stimulation, several lines had failed to expand.  The majority of these 

lines were from mice with primary DENV-3 infection.  This lack of cell expansion 

correlates with the low T cell responses that we saw in ELISPOT assays and day 5 bulk 

cultures.  The remaining lines were stained with the Kd-D1/3 NS3 and Kd-D2/4 NS3 

tetramers and tested for peptide-specific IFNγ- and TNFα-producing CD8+ T cells by 

intracellular cytokine staining.  The one culture remaining from the mice with primary 
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FIGURE III-8:  Comparison of tetramer staining and the frequency of TNFα+ 
CD8 T cells.  Bulk culture T cell lines were generated from mice that received either 
primary DENV-2 infection, primary DENV-3 infection, or primary DENV-3 followed 
by secondary DENV-2 infection.  Each cell line was stimulated with either D1/3 NS3 
or D2/4 NS3 peptide. Cells were restimulated at 14-day intervals with peptide and 
irradiated P815 cells.  After three rounds of stimulation, cells were stained with the 
Kd-D1/3 NS3 and Kd-D2/4 NS3 tetramers and assayed for TNFα response to peptide 
by intracellular cytokine staining. 
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FIGURE III-9:  Comparison of tetramer staining and the frequency of IFNγ+ 
CD8+ T cells.  Cell lines were generated as described in Figure III-8.  After three 
rounds of stimulation, cells were stained with the Kd-D1/3 NS3 and Kd-D2/4 NS3 
tetramers and assayed for IFNγ response to peptide by intracellular cytokine staining. 
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FIGURE III-10:  Representative tetramer and intracellular TNFα staining of 
bulk culture T cell lines.  Cell lines were established as described in Figure III-8.  
After 3 rounds of stimulation, cells were stained with Kd-D1/3 and Kd-D2/4 NS3 
tetramers and assayed for TNFα production by intracellular cytokine staining. 
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DENV-3 infection, stimulated in vitro with the D2/4 NS3 peptide, showed minimal 

cytokine response to either NS3 peptide.  Tetramer staining revealed that the cells were 

mostly specific to the Kd-D2/4 NS3 tetramer, with much lower staining by the Kd-D1/3 

NS3 tetramer.  (Figs. III-8 – III-10)  These results are in contrast to those from tetramer 

staining performed five days post stimulation.  In the majority of the cell lines, five days 

post stimulation, the frequencies of both Kd-D1/3 NS3 and Kd-D2/4 NS3 positive cells 

were similar.  However, the fact that the vast majority of the cells six weeks post 

stimulation are now Kd-D2/4 NS3 positive indicates expansion of cells that may have 

been originally D1/3 NS3 specific, but were cross-reactive and had a higher affinity for 

D2/4 NS3.  These data correlate with the results from sequential infection experiments, 

since the D2/4-NS3 peptide was the most immunogenic in the sequential infection 

experiments, regardless of the serotype of challenge. 

 Cell lines generated from mice with primary DENV-2 infection stimulated with 

either D1/3 NS3 or D2/4 NS3 peptide had a greater frequency of Kd-D2/4 NS3 tetramer 

positive cells than Kd-D1/3 NS3 tetramer positive cells (Figs. III-8 - III-10).  Both the 

IFNγ and TNFα responses of the cell lines that were stimulated in vitro with the D1/3 

NS3 peptide were barely detectable, whereas the cell lines that were stimulated with the 

D2/4 NS3 peptide showed a very high frequency of IFNγ and TNFα positive cells in 

reaction to both peptides (Fig. III-8 – III-10).  These results suggest that cells induced by 

primary DENV-2 infection in vivo were less cross-reactive to DENV-3-driven in vitro 

expansion.   

T cell lines established from mice with heterologous secondary DENV-2 infection 

stimulated with either peptide had a much percentage of Kd-D2/4 NS3 positive cells than 
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Kd-D1/3 NS3 positive cells.  Nevertheless, cytokine production was the same in response 

to stimulation with either D1/3 NS3 or D2/4 NS3 peptides (Figs. III-8 – III-10).  In 

addition, the cytokine responses in these cell lines were decreased compared to that from 

cell lines generated from animals with a primary DENV-2 infection.  These differences 

indicated different cell populations expanding and responding between the two infection 

groups.  Since the cytokine responses in lines established from secondary DENV-2 

challenged mice is less robust than those from the lines generated from the DENV-2 

primary infected mice, the responding cell population may be D1/3-NS3-specific but 

cross-reactive for D2/4 NS3. These data demonstrate cross-reactivity of D1/3 NS3-

specific cells for D2/4 NS3.   
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CHAPTER IV 

 

MEMORY CD4+ T CELLS AUGMENT THE MEMORY CD8+ T CELL 

RESPONSE DURING SECONDARY DENGUE VIRUS INFECTIONS 

 Heterologous secondary infections are a significant risk factor for developing 

DHF/ DSS.  However, the sequences of serotypes do not all have equal likelihood of 

inducing severe dengue disease.  Epidemiological data point to specific serotype 

sequences of infection leading to an increased frequency of DHF/DSS.  In particular, the 

following infection sequences have been linked to DHF:  DENV-1 followed by DENV-2, 

DENV-2 followed by DENV-1, and DENV-4 followed by DENV-2 (Sangkawibha, 

Rojanasuphot et al. 1984; Endy, Nisalak et al. 2002; Alvarez, Rodriguez-Roche et al. 

2006).  The mechanism(s) by which one sequence causes more severe illness than 

another is/are not known. 

In our studies of the CD8 T cell response to sequential infections described in 

Chapter III, we noted that the effects of secondary infection could not necessarily be 

predicted by the amino acid sequences of the CD8 T cell epitopes. For example, we 

observed that, after primary DENV-2 infection followed by secondary DENV-1 boost, 

there was an increase in the immune response to the D1/3 NS3 peptide.  However, there 

was no increase in response to this peptide in mice that received the same primary 

infection but were rechallenged with DENV-3.  This phenomenon was of interest since 

the amino acid sequence for the NS3 peptide was the same for both DENV-1 and DENV-

3.   We found this scenario to be an opportunity to study the differences in sequences of 

infections.  Since both DENV-1 and DENV-3 induced low CD8+ T cell responses in the 
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mice as a primary infection, we hypothesized that the differential response in secondary 

infections could be a result of differences in the CD4+ T cell response.   We hypothesized 

that DENV-1 stimulated a more robust CD4+ T cell response in secondary infection than 

DENV-3 and that these CD4+ T cells may provide help to the memory CD8+ T cells, 

resulting in an increased frequency of IFNγ producing CD8+ T cells.  

 

A.  Difference in magnitude of the CD4+ T cell responses in secondary DENV-1 

versus secondary DENV-3 infections 

     To determine if there was a difference in the magnitude of the CD4+ T cell response, 

we performed ICS on splenocytes from mice that were administered primary DENV-2 

followed by DENV-1 or DENV-3 and also on splenocytes from mice that were 

immunized with a primary DENV-1, DENV-2, or DENV-3 infection.  Since the murine 

CD4+ T cell response to dengue is not well characterized, we tested the CD4+ T cell 

response to whole virus antigens using infected Vero cell lysates (Figure IV-1), as has 

been done to measure DENV-specific human CD4 T cell responses (Mangada and 

Rothman 2005).  The IFNγ responses to DENV antigens were low after primary infection 

regardless of viral serotype (Figure IV-2).  Responses in mice that received DENV-3 

after DENV-2 were slightly higher and the highest responses were observed in mice that 

received secondary DENV-1 infection after primary DENV-2 infection.  The frequency 

of IFNγ+ T cells in cells from mice with secondary DENV-1 infection in response to in 

vitro stimulation with DENV-2 antigen was significantly higher than in cells from mice 

that were administered secondary DENV-3 (Fig. IV-2; representative data from one 

experiment are shown in Fig. IV-1). This finding is particularly interesting since DENV-2 
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Figure IV-1:  Representative IFNγ staining in response to inactivated DENV antigens.  Mice were infected with 
primary DENV-2 infection and rechallenged 28 days later with either DENV-1 or DENV-3.  Eight days post 
secondary infection, mice were sacrificed and their splenocytes were assayed for IFNγ production to DENV-infected 
Vero cell lysates by intracellular cytokine staining.  The frequencies of DENV-specific IFNγ+ CD4+ T cells were 
calculated by gating on the IFNγ+ CD4+ CD3+ small lymphocytes and then subtracting the frequency of IFNγ+ CD4+ 
T cells in samples incubated with a control (uninfected) Vero cell lysate from the frequency in samples stimulated 
with the viral antigens.  Frequencies in black type are before subtraction of the control values.  Frequencies in red 
type are after the subtraction of the control values. 
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FIGURE IV-2:  Comparison of CD4+ T cell responses in primary versus secondary dengue 
virus infections.  Intracellular IFNγ staining was performed on splenocytes from mice that received 
either primary DENV-1 infection, primary DENV-2 infection, primary DENV-3 infection, or primary 
DENV-2 followed by secondary DENV-1 or DENV-3 infection.  CD4+ T cell responses to 
inactivated DENV antigens were measured.  Medians, 95% confidence intervals, and p values were 
calculated by the Mann-Whitney test.  P values <0.05 were considered significant and < 0.10 are 
shown.  N = 7 – 8 mice per infection group from a total of two experiments. 
 

Stimulation 

P
er

ce
nt

 IF
N

γ+  C
D

4+ 
T 

C
el

ls
 

0

2

4

6

8

10

12

14

D1 Ag D2 Ag D3 Ag D4 Ag

D1 Primary  N=7
D2 Primary  N=8
D3 Primary  N=8
D2 D1  N=8
D2 D3  N=8

P = 0.006

63



 

D1/3 NS3               D2/4 NS3Infection    CD8+ CD4+

DENV-1       +            -

DENV-3      +            -

DENV-1      +            +

DENV-3      +            +

0.04                        0.00

0.00                        0.00

0.18                        0.03

0.05                        0.07

D1/3 NS3               D2/4 NS3Infection    CD8+ CD4+

DENV-1       +            -

DENV-3      +            -

DENV-1      +            +

DENV-3      +            +

D1/3 NS3               D2/4 NS3Infection    CD8+ CD4+

DENV-1       +            -

DENV-3      +            -

DENV-1      +            +

DENV-3      +            +

0.04                        0.00

0.00                        0.00

0.18                        0.03

0.05                        0.07

 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

A. 

64



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. 
P

er
ce

nt
 IF

N
γ+  C

D
8+  T

 C
el

ls
 

C
D

8 
D

1V
 3

N

C
D

4 
C

D
8 

D
1V

 3
N

C
D

8 
D

3V
 3

N

C
D

4 
C

D
8 

D
3V

 3
N

C
D

8 
D

1V
 4

N

C
D

4 
C

D
8 

D
1V

 4
N

C
D

8 
D

3V
 4

N

C
D

4 
C

D
8 

D
3V

 4
N

0 .00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

             CD8      CD4+CD8    CD8        CD4+CD8      CD8      CD4+CD8       CD8      CD4+CD8   

DENV-1 D3V DENV-1 D3V
D1/3 NS3 D2/4 NS3 

Cell Type Transferred 
Infection 

Peptide Stimulation 

FIGURE IV-3:  Transfer of memory CD4+ T cells affects the CD8+ T cell 
response to secondary dengue virus infections.  CD4+ and CD8+ T cells were 
isolated from DENV-2-immune mice.  The CD8+ T cells alone or in combination with 
the CD4+ T cells were transferred i.v. to naïve mice.  The following day, mice were 
administered either DENV-1 or DENV-3.  The splenocytes were harvested on day 
nine post infection.  The peptide-specific CD8 T cell IFNγ response was measured by 
intracellular cytokine staining.  (a) Representative intracellular cytokine staining.  Cell 
type(s) transferred and serotype of virus infection are shown on the left.  (b) Summary 
data.  N values for each group are on the left to the dot plot for each group.  Medians 
are represented by the horizontal bars.  P values were calculated by the Mann-Whitney 
test are shown and those values <0.10 are shown.  P values <0.05 were considered 
significant.  N = 5 – 8 mice per group from a total of 3 experiments.  
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was the primary infection in both groups of mice.  These results indicate that there was a 

differential CD4+ T cell response between secondary DENV-1 and secondary DENV-3 

infections, especially to the DENV-2 antigen. 

 

B.  Memory CD4+ T cells augment the memory CD8+ T cell response 

     We hypothesized that serotype-crossreactive memory CD4+ T cells generated by a 

primary DENV-2 infection provide help for CD8+ T cells upon secondary infection.  

Therefore, we next examined whether the memory CD4+ T cells affect the CD8+ T cell 

response to secondary infection.  CD8+ T cells with or without CD4+ T cells from 

DENV-2-immune mice were transferred into naïve mice.  The mice then were challenged 

with either DENV-1 or DENV-3.  CD8+ T cell IFNγ responses were measured in 

response to stimulation with the immunodominant CD8 T cell epitopes D1/3 NS3 and 

D2/4 NS3.  In response to the D2/4 NS3 peptide, both groups of mice that received 

memory CD4+ T cells and either DENV-1 or DENV-3 infection had an increased CD8+ T 

cell response over that of the corresponding group that were not administered the 

memory CD4+ T cells (Fig. IV-3). Furthermore, the transfer of the memory CD4+ T cells 

appeared to increase the frequency of responding CD8+ T cells to D1/3 NS3 in mice that 

received the DENV-1 infection (Fig. IV-3); however, this difference was not statistically 

significant (p=0.355).  As a control, a group of mice received CD8+ T cells from DENV-

2-immune mice in combination with CD4+ T cells isolated from naïve mice.  There was 

no increase of the CD8+ T cell response after transfer of the naïve CD4+ T cells.  This 

control confirmed that the increase in the response by the CD4+T cells was due to 

memory CD4+ T cells and not solely to the presence of transferred CD4+ T cells (data not 
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shown).  Another control included mice that received memory CD4+ T cells alone.  This 

group was incorporated into the experiment to define whether it was the response of 

memory or naïve CD8+ T cells that was boosted by the memory CD4+ T cells (data not 

shown).  There was no increase in the naïve CD8+ T cell response to infection; therefore, 

this group verified that the memory CD8+ T cell response was the response affected by 

transfer of the CD4+ T cells. These data show that memory CD4+ T cells enhance the 

frequency of IFNγ producing memory CD8+ T cells during secondary DENV infection. 

 

C. DENV-2-specific memory CD4+ T cells are more crossreactive to DENV-1 than 

DENV-3 

 A potential mechanism to explain the phenomenon that DENV-2-specific 

memory CD4+ T cells amplify the frequency of responding CD8+ T cells more in a 

secondary DENV-1 infection than in a secondary DENV-3 infection is that the memory 

CD4+ T cells are more crossreactive to antigen from DENV-1 than that from DENV-3.   

To test this hypothesis, bulk culture lines were generated from splenocytes from mice that 

were in memory phase after DENV-2 infection.  The cultures were stimulated with 

inactivated whole virus antigen from either DENV-1 or DENV-3.  The cells were then 

assayed for IFNγ production on day 7 and day 14 post stimulation by intracellular 

cytokine staining in which they were stimulated with antigen from all four serotypes.  

Responses were generated to all four antigens on both days, though the response to 

DENV-2 antigen was highest in magnitude (Figs. IV-4 and IV-5).  The response to 

DENV-2 antigen was significantly higher in cultures stimulated with DENV-1 antigen 

than in cultures stimulated with DENV-3 antigen.  This difference was most striking day 
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14 post stimulation (Figs. IV-4 and IV-5).  These results suggest that DENV-2-specific 

memory CD4+ T cells expanded to a greater extent in vitro in response to stimulation 

with DENV-1 than DENV-3, and suggest a greater degree of crossreactivity to DENV-1 

than DENV-3.  In addition, these data point to a mechanism to explain the differential 

CD8+ T cell response after secondary DENV-1 infection compared to secondary DENV-

3 infection, in which DENV-2-specific memory CD4+ T cells respond to a greater degree 

and therefore provide more help to memory CD8+ T cells, resulting in an enhanced 

immune response during secondary infection. 
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FIGURE IV-4:  Representative intracellular cytokine staining of bulk culture CD4 T cells.  
Splenocytes from mice immunized 28 days previously with DENV-2 were stimulated in vitro with 
inactivated DENV-1 or DENV-3 antigens. The top panel shows representative intracellular cytokine 
staining of the T cell lines after seven days of culture. Cells were stimulated with DENV-1 antigen, 
DENV-2 antigen, DENV-3 antigen, DENV-4 antigen or control antigen (uninfected Vero cell lysate).  
The bottom panel shows intracellular staining after 14 days of culture.  Frequencies in black type are 
before subtraction of the control values.  Frequencies in red type are after the subtraction of the control 
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FIGURE IV-5:  Crossreactivity of memory CD4 T cell responses from DENV-2–
immune mice.  Bulk culture T cell lines were generated from splenocytes from mice 
that were administered DENV-2 twenty-eight days prior as described in the Figure IV-
4 legend.  Cells were stimulated with inactivated whole virus antigens from either 
DENV-1 (circles) or DENV-3 (diamonds).  Day 7 (a) and day 14 (b) post stimulation, 
cells were tested for IFNγ production to whole virus antigen for all for serotypes by 
intracellular cytokine staining.  The median responses are represented by the black 
bars.  P values were calculated by the Mann-Whitney test and those <0.10 are shown. 
P values <0.05 were considered significant.  One experiment was performed with 4 
mice per infection group.  One culture from each mouse was established for each in 
vitro stimulation (D1 Ag, D3 Ag, and control Vero Ag) resulting in a total of 12 
cultures. 
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CHAPTER V 

 

DISCUSSION 

To our knowledge, this is the first study to analyze immune responses in mice 

after heterologous sequential DENV infections.  Our focus was on several aspects of the 

T cell immune response: specificity, kinetics, frequency and cross-reactivity.  We 

performed ELISPOT assays, intracellular cytokine staining, and MHC-peptide tetramer 

staining to measure DENV-specific CD4 and CD8 T cell responses in immunocompetent 

Balb/c mice.  Adoptive transfer of memory CD4+ and CD8+ T cell populations confirmed 

that memory cells were preferentially recruited to respond, influence and augment the 

immune response during heterologous secondary dengue virus infections. 

 

A. KINETICS OF THE T CELL RESPONSE TO PRIMARY AND SECONDARY 

DENGUE VIRUS INFECTIONS 

After both primary and secondary DENV infections, peptide-specific IFNγ 

responses were detected.  Previous studies of the DENV-specific T cell response in mice 

had focused on the memory phase of the immune response, and had not quantitated cells 

directly ex vivo. Furthermore, the response to epitopes on nonstructural proteins was 

boosted after secondary infection; this showed that primary infection did not prevent the 

secondary infection. 

When we examined the kinetics of the IFNγ response after primary and secondary 

infections, we found that the timing of the peak responses was similar after both 

immunizations, between days 8 - 10 (Table III-1).   Though it was initially expected that 
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the onset and peak of the memory response might occur earlier than that after primary 

infection, the kinetics of the response may reflect the low antigen load in this animal 

model.  DENV does not replicate well in immunocompetent mice (Shresta, Kyle et al. 

2004); therefore, the timing of the T cell response may be accounted for by equally slow 

production of antigen in both primary and secondary DENV infections.  Studies infecting 

IFNα/β/γ receptor knockout mice with DENV have shown development of viremia and 

dengue-induced disease (Roehrig, Bolin et al. 1998).  Therefore, it might be possible to 

test if viremia affects the kinetics of the immune response to secondary infection by 

temporarily blocking IFNα signaling to allow viral replication and subsequently 

comparing the kinetics of immune response in primary versus secondary infected mice. 

 

B.  ENHANCEMENT OF T CELL RESPONSE AFTER SECONDARY INFECTION 

After heterologous secondary DENV infections, an increase in the frequency of 

peptide-specific T cells was observed, when compared to that during acute and memory 

phases following primary infection (Figures III-1 and III-2).  The boost in the immune 

response after heterologous secondary infection in this mouse model is consistent with 

findings in humans.  In humans, increased T cell activation is also associated with more 

severe dengue disease (Green, Pichyangkul et al. 1999; Green, Vaughn et al. 1999).     

Interestingly, the magnitude of the T cell response in secondary infection 

appeared to depend on the sequence of infections. This influence of sequence of infection 

has been seen in human studies, where secondary DENV-2 infections were associated 

with a higher risk for DHF (Sangkawibha, Rojanasuphot et al. 1984; Vaughn, Green et al. 

2000).  In Balb/c mice, secondary DENV-2 infection following primary DENV-3 
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immunizations resulted in the most pronounced boost in T cell response to the peptides 

studied (Figures III-1 and III-2).   However, because of differences in epitopes 

recognized by humans and mice, the specific sequence in mice is not necessarily 

indicative of the risk in humans.  In humans, certain DENV-2 strains have been 

associated with increased virulence and DENV-3 strains have been linked to increased 

disease severity (Leitmeyer, Vaughn et al. 1999; Endy, Nisalak et al. 2002), it is possible 

that sequential DENV-3 and DENV-2 infections may promote immunopathogenesis by 

resulting in an enhanced immune response.    

We also saw that the D2/4 NS3 peptide elicited the largest response compared to 

the other peptides tested, regardless of the infecting serotype (Fig. III-1).  A similar 

phenomenon was seen in DENV-immune humans, where particular epitope sequence 

variants induced a larger response in vitro regardless of the vaccination serotype 

(Bashyam, Green et al. 2006).  Since a heterologous peptide can be more immunogenic 

than the homologous version, one can envision a situation in which a secondary 

heterologous infection can stimulate activation of cross-reactive memory T cells and 

result in an enhanced immune response.   

The observed increased frequency of IFNγ-producing T cells in secondary DENV 

infection suggested that cross-reactive memory cells from the primary infection were 

being preferentially recruited during secondary infection. This is very difficult to 

demonstrate in a definitive way in humans as pre-infection samples are rarely available 

for study.  Though there are limitations in using this system to model human infections, 

since the animals did not become ill.  Also, no virus was detected by quantitative 

polymerase chain reaction (PCR) at days 4 and 9 post primary and secondary infections 
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in the sera, livers, or spleens.  However, since CD8+ T cell responses do exist to non-

structural proteins, suggesting replication, there may be low levels of viral replication 

occurring at earlier time points after infection.  Despite these limitations, we confirmed 

by adoptive transfer experiments that the DENV-specific cross-reactive memory CD8+ T 

cells are, in fact, being preferentially enlisted to respond to secondary infection.  It was 

found that the frequency of transferred CD8+ T cells from DENV-immune mice 

responding was significantly larger than host naïve CD8+ T cells, showing that the 

memory population was the main cell population responding to the secondary infection 

(Figure III-4).  Our data are in agreement with data from human clinical studies, where T 

cell responses after secondary infection have been shown to be mostly serotype-cross-

reactive (Kurane, Meager et al. 1989; Mathew, Kurane et al. 1998; Bashyam, Green et al. 

2006).  Our findings of serotype-cross-reactive immune responses in vivo are also 

consistent with data from Monkongolsapaya et al, who showed that cells from patients 

with secondary DENV-2 had a higher affinity to HLA-peptide tetramers corresponding to 

other serotypes, presumably the serotype of primary infection (Mongkolsapaya, 

Dejnirattisai et al. 2003).  

 

C.  THE ROLE OF ANTIBODY-DEPENDENT ENHANCEMENT OF INFECTION 

The theory of antibody-dependent enhancement (ADE) proposes a mechanism for 

DHF in secondary DENV infection.  Crossreactive, non-neutralizing, anti-envelope 

antibodies generated from the primary infection attach to virions from the secondary 

DENV infection and, through uptake of virus into cells via Fcγ receptors, enhance 

infection (Halstead, Nimmannitya et al. 1970).  In addition to the epidemiological studies 
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by Kliks et al that demonstrated that maternal antibodies were sufficient to enhance viral 

infection by infants (Kliks, Nisalak et al. 1989), Huang et al observed in a cohort of 

infant patients that there were elevated TNFα, IL-6, IFNγ, and IL-10 levels (Huang, Lei 

et al. 2000).  They hypothesized that since these infants had only a primary infection, that 

ADE was the explanation of elevated cytokine levels.  To determine if ADE was the 

cause of the enhanced immune response that we observed, we passively immunized mice 

with DENV-3-immune sera prior to DENV-2 challenge.  Rather than a boosting of the 

immune response, as would be expected if ADE played a role, passive immunization 

actually suppressed the IFNγ response (Figure III-3).  We therefore concluded that 

antibody-dependent enhancement was not the driving factor of the increased CD8+ T cell 

response seen.   

Caveats do exist for our antibody dependent enhancement experiments.  ADE is 

dependent upon the antibody concentration (Halstead 1979).  It was found that ADE 

occurred at more dilute concentrations of antibodies, where the neutralizing antibody 

titers had waned, resulting in the serum being more concentrated with cross-reactive non-

neutralizing antibodies (Halstead, Nimmannitya et al. 1970; Halstead 1979; Halstead 

1982; Kliks, Nimmanitya et al. 1988; Kliks, Nisalak et al. 1989).  We did not use 

different dilutions of serum in our experiments, nor did we measure the neutralizing 

antibody titers.  Therefore, in addition to crossreactive memory T cells, it is a possibility 

that antibody dependent enhancement also may function to augment the T cell response 

that we observe after secondary infection in our system. 
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Though not directly related to our studies, the result that cross-reactive antibodies 

may suppress the immune response is interesting.  A potential mechanism that would 

account for our findings would be that crossreactive neutralizing antibodies are present 

which decreased the viral load, thereby resulting in diminished IFNγ production.  To 

follow up on this observation and determine if antibodies directed to the primary 

infection suppresses the IFNγ response to the secondary, it would be possible to employ 

recombinant chimeric DENV.  Such a chimeric virus could consist of a DENV-3 genome 

with the E gene replaced with that of another flavivirus such as WNV.  The DENV E 

protein is the protein to which the majority of the neutralizing antibody response is 

directed (Roehrig, Bolin et al. 1998).  Using the chimeric virus as a primary infection, the 

antibody response elicited would presumably be to the WNV E protein.  Following with a 

secondary DENV-2 challenge, it would be possible to see if the suppression of the 

immune response occurred with the lack of presence of cross-reactive anti-DENV-3 E 

protein antibodies.  It also may be of interest to use a chimeric virus containing the WNV 

NS1 protein, since DENV NS1 is shown to elicit a non-neutralizing but complement-

fixing antibody response.   

These chimeric DENV are a valid tool to study the nature of the virus-immune 

system interactions since they are also currently being employed as potential vaccine 

candidates.  For example, Calvert et al, vaccinated AG129 mice with a chimeric vaccine 

that was composed of a West Nile Virus backbone and the capsid and nonstructural 

proteins from DENV.  Though this vaccine was not able to completely protect the mice 

from lethal DENV challenge, it increased the mean survival times of the animals 

(Calvert, Huang et al. 2006).  Also, Blaney et al, (Blaney, Sathe et al. 2007) used a 
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vaccine with a DENV-4 backbone and replaced either the capsid, membrane, or envelope 

proteins (or combinations thereof) with those of DENV-1.  Immunization with the virus 

containing the membrane and envelope proteins from DENV-1 resulted in 66% 

seroconversion in rhesus monkeys and protected the animals against DENV-1 challenge 

(Blaney, Sathe et al. 2007).   Since the most successful DENV vaccine will most likely be 

a tetravalent vaccine, one that will elicit a concurrent immune response to all four 

serotypes, it will be important to the evaluation of the efficacy of this vaccine to 

determine the generation of the serotype-specific immune response.  Since chimeric 

viruses have become a means by which the antibody and other immune responses to 

individual elements of DENV can be assessed, they are potentially an ideal vaccine 

candidate due to the ease of testing vaccine efficacy and ability to elicit a tetravalent 

immune response.   

 

D.  AUGMENTED TNFα RESPONSE AFTER SECONDARY CHALLENGE 

The importance of TNF-α in human DENV infections and its implication in 

disease severity have been previously described.  Using immunoenzymatic assays, Hober 

et al, found that serum samples from patients suffering from DHF in Tahiti in 1989-1990 

all contained high levels of TNFα, with the highest levels found in the most severe 

grades of DHF (Hober, Poli et al. 1993).  Another report demonstrated that TNFα was 

more frequently detected in the plasma of patients with DHF as opposed to DF and other 

febrile illnesses (OFI) (Green, Vaughn et al. 1999).  Mangada et al measured the 

TNFα production of pre-infection PBMCs from DENV-infected patients to viral 

antigens.  TNFα responses were found exclusively in patients that were hospitalized, 
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suggesting a correlation between TNFα production and severe disease (Mangada, Endy 

et al. 2002).  These data suggest that serotype-cross-reactive memory T cells produce 

increased amounts of TNFα during secondary infection, resulting in more severe disease.  

Our data in mice also show that the frequency of DENV-specific TNFα+ CD8+
 T cells 

during the acute phase after heterologous secondary DENV-2 infection is greater than 

that during the acute phase of either primary DENV-3 or primary DENV-2 infections and 

also during the memory phase after a primary DENV-3 inoculation.  This enhanced 

response was seen after stimulation with all peptides tested, though the degrees of 

augmentation varied (Figure III-5).  These results correlate with human studies since the 

data in both human samples and this murine system demonstrate an elevated frequency of 

TNFα+ CD8+ T cells after secondary DENV infection.  These findings also suggest that 

secondary infection activates T cells with an altered functional profile. 

The possibility should be considered that the increased amounts of TNFα seen 

were not due to activated DENV-specific cross-reactive memory T cells but rather that it 

is the nature of memory T cells to produce more TNFα than cells from acute infection.  

Slifka and Whitton found that CD8+ T cells from Balb/c mice that were infected 295 days 

prior with LCMV produced significantly more TNFα in response to the 

immunodominant LCMV peptide NP118-126 than CD8+ T cells from mice infected only 

eight days prior (Slifka and Whitton 2000).  To address this possibility, we examined 

whether CD8+ T cells from mice that were in the memory phase after primary DENV 

infection produced more TNFα than those from mice in the acute phase of primary 

DENV infection in response to a non-specific stimulation, PMA/Ionomycin, directly ex 

vivo (media stimulation alone), or in response to the DENV peptides.  We found no 
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significant differences in TNFα responses in any of these stimulation conditions between 

the acute and memory cell populations (data not shown).  These results indicate that the 

augmented TNFα response seen after heterologous secondary DENV infection is DENV-

specific and not a general phenomenon of the memory cells.  The differences between 

our results and those of Slifka and Whitton may be explained by the different viruses 

studied.  LCMV generates a much more potent immune response than that induced by 

DENV (Slifka and Whitton 2000).  As a result, the memory T cells may be programmed 

differently after LCMV infection than those generated during DENV infection.  Also the 

time point measured for the memory phase by Slifka and Whitton was 295 days post 

infection, where our studies examined the memory phase at 28 days post infection.  To 

further examine this possibility, the memory TNFα response after DENV infection could 

be measured at the later time point; however, this would not affect the interpretation of 

our findings during secondary infection at an interval of 28-56 days.  

 

E.  ALTERED SPECIFICITY OF CYTOKINE AND CYTOTOXIC RESPONSES 

AFTER SECONDARY CHALLENGE 

We hypothesized that the altered CD8 T cell response to secondary DENV 

infection would also be reflected by altered effector functions, such as cytolysis and 

cytokine secretion. We attempted to quantify cytotoxic activity using an in vivo 

cytotoxicity assay.  However, we were unable to detect specific clearance of DENV 

peptide-pulsed at 4 or 16 h after injection (data not shown). We speculate that this low 

frequency of DENV-specific cytotoxic T lymphocytes (CTLs) made the in vivo 

cytotoxicity assay infeasible.  Therefore, we examined DENV-specific CTL activity and 
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IFNγ and TNFα responses post primary and secondary infections ex vivo using bulk 

culture T cell lines.  After five days of culture, we found that cell lines derived from mice 

with primary DENV-2 infection and stimulated with the D2/4 NS3 peptide were mostly 

specific for the D2/4 NS3 peptide based on tetramer staining and CTL activity (Figure 

III-6), indicating the expansion of a DENV-2-specific cell population.  Cell lines from the 

same mice generated by stimulation with the D1/3 NS3 peptide showed equal cytotoxic 

activity towards targets pulsed with either peptide, indicating that cells expanded with a 

D1/3 NS3-specificity can be cross-reactive to peptides from other serotypes. In 

comparison, cell lines generated from mice that received a secondary DENV challenge, 

whether stimulated with D1/3 NS3 or D2/4 NS3 peptide, were predominantly serotype-

crossreactive based on both tetramer staining and CTL activity (Figure III-6).  These data 

from cultures derived from secondary infection suggest that serotype-crossreactive T 

cells from the primary infection expanded in vivo in secondary infection, and were the 

predominant cell type in vitro after stimulation with either the homologous or 

heterologous peptide.  These results suggest that the primary infection altered the 

specificity cytotoxic responses of the cells responding to the secondary infecting virus. 

Several of the DENV-specific cell lines could not be maintained in culture, 

especially those generated from mice with primary DENV-3 infection.  Cell lines from 

mice with primary DENV-2 infection could be expanded in vitro; after three rounds of 

stimulation these cell lines became highly skewed, showing high frequencies of staining 

with the D2/4 NS3 tetramer but low staining with the D1/3 NS3 tetramer (Figure III-8). 

However, these cells were functionally crossreactive to D1/3 NS3 as demonstrated by 

IFNγ and TNFα production. In comparison, cell lines from mice receiving a secondary 
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DENV-2 infection, had low frequencies of TNFα+ and IFNγ+ cells, despite showing 

similar patterns of tetramer staining as the cell lines from primary DENV-2 infection 

(high levels of staining with the D2/4 NS3 tetramer and low staining with the D1/3 NS3 

tetramer, Figure III-8). These findings lead us to speculate that the T cells from mice with 

secondary DENV-2 infection were functionally similar to the T cells generated during 

primary DENV-3 infection. 

 

F.  ROLE OF CD4+ T CELLS IN SEQUENCE DEPENDENCE OF THE IFNγ 

RESPONSE 

 During studies of the IFNγ response of CD8+ T cells in mice after secondary 

infection, we found that response to the D1/3 NS3 peptide was augmented in mice that 

received primary DENV-2 infection followed by a secondary DENV-1 challenge, but not 

in animals that also received a primary DENV-2 immunization but were rechallenged 

with DENV-3 (Figure III-1).  This result was surprising since the amino acid sequence of 

this epitope was the same in both DENV-1 and DENV-3.   This scenario gave us an 

opportunity to further investigate why the sequence of infection strongly influences the 

immunologic response.  DENV-1 and DENV-3 both elicited comparable (and weak) CD8 

T cell responses as primary infections (Figure III-1).  We, therefore, concluded that the 

differences in the memory CD8+ T cell response could not be explained by the levels of 

presentation of the D1/3 NS3 epitope.  We hypothesized that serotype-cross-reactive 

memory CD4+ T cells might provide help to the memory CD8+
 T cells thereby 

augmenting the CD8+ T cell response, and that the degree of cross-reactivity of the 

memory CD4+ T cells from DENV-2-immune mice for DENV-1 versus DENV-3 might 
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be different.  We found that the DENV-specific CD4 T cell IFNγ response was larger 

after secondary DENV-1 challenge than secondary DENV-3 infection, particularly to 

DENV-2 antigen (Figure IV-2).  The adoptive transfer of memory CD4+ T cells from 

DENV2-immune mice along with memory CD8+ T cells into naïve animals enhanced the 

DENV-specific CD8+ T cell response to DENV-1 > DENV-3 (Figure IV-3).  This 

phenomenon did not occur with adoptive transfer of memory CD8+ T cells alone or with 

CD4+ T cells from naïve mice.  These results showed that memory CD4+ T cells affected 

the peptide-specific IFNγ responses of CD8+ T cells. This hypothesized role for memory 

DENV-specific CD4 T cells in secondary infections could potentially be explored further 

by immunizing mice with a primary infection and then depleting the CD4 T cells just 

prior to a secondary infection. 

Different levels of CD4 T cell cross-reactivity to DENV1 and DENV3 

represented a potential mechanism to explain this differential response to secondary 

infection in vivo.  We evaluated this possibility by generating short-term cell lines from 

DENV-2-immune mice by in vitro stimulation with DENV-1 or DENV-3 antigen.  We 

observed that expansion occurred after stimulation with either antigen.  Cell lines showed 

the highest responses to DENV2 antigen (Figs. IV-4 and IV-5).  In addition, the 

frequency of DENV-specific IFNγ CD4+ T cells was significantly higher in DENV1 

antigen-stimulated cultures than in DENV3 antigen-stimulated cultures (Figs. IV-4 and 

IV-5).  These results suggest that DENV2-specific memory CD4+ T cells are more 

crossreactive to DENV1 than DENV3.  Surprisingly, by day 14, there was minimal IFNγ 

response to DENV1 and DENV3 antigens, which were used for stimulation of the lines 

(Figs. IV-4 and IV-5).  This suggests that the responding cells had higher avidity for 
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DENV-2 than other serotypes, even those used for in vitro expansion.  However, one 

caveat for interpreting these data arose from the use of crude viral antigen stocks made 

from cell lysates.  It is possible that amount of viral antigen present in the stocks may 

vary between the DENV-1 and DENV-3 antigen preparations.  Therefore, the differences 

in the IFNγ CD4+ T cell responses may be a result of varying amounts of antigen that cell 

lines were cultured with as opposed to differences in crossreactivity of the DENV-2-

specific memory CD4+ T cells.  Normalizing the amount of antigen in the different 

antigen preparations would allow for more accurate interpretation of our results.  Also, 

once CD4+ T cell epitopes are defined for the Balb/c mice, a known concentration of 

stimulation could be utilized for these experiments. 

An effect of CD4+ T cell help on memory CD8+ T cell responses has also been 

demonstrated in other experimental systems such as LCMV and Listeria monocytogenes 

infections.  In these systems it was found that a lack of CD4+ T cell help resulted in a 

diminished number of memory CD8+ T cells.  Evidence has been presented from many 

groups that CD4+ T cell help during the initial priming of a naïve CD8+ T cell was 

dispensable for the primary CD8+ T cell response.  However, CD4+ T cell help during 

this initial phase was required for the generation of an effective CD8+ T cell memory 

response (Shedlock, Whitmire et al. 2003; Sun and Bevan 2003).  Though there appears 

to be general consensus that CD4+ T cell help is required for the production of an 

operative CD8+ T cell memory response in many systems, the mechanism by which this 

phenomenon occurs has remained controversial.  Sun et al provided data that indicated 

that CD4+ T cell help was required for the maintenance of the pool of memory CD8+ T 

cells (Sun and Bevan 2003).  Others presented data that CD4+ T cell help was required to 
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program the CD8+ T cell for memory (Bevan 2004).  Most recently, Novy et al., using 

vaccinia virus, determined that the presence of CD4+ T cells was crucial for the 

expansion and survival of memory CD8+ T cells during rechallenge (Novy, Quigley et al. 

2007).  Our data support these aforementioned studies that conclude that memory CD4+ T 

cells influence the CD8+ T cell response during rechallenge.  It also identifies a potential 

mechanism for how the serotype sequence of heterologous DENV infection influences 

disease severity. 

G. MURINE MODELS OF HETEROLOGOUS IMMUNITY AND 

IMMUNOPATHOLOGY 

Other viral systems have displayed heterologous immunity and their roles in 

immunopathogenesis in mice.  Studies of LCMV infected mice showed that a 

heterologous infection decreases the numbers of T cells specific for different pathogens 

from the memory CD8+ T cell pool (Selin, Vergilis et al. 1996).  However, if these 

memory cells are cross-reactive to the heterologous infection, then these cells do not 

disappear from the memory T cell population.  These cells may actually increase in 

number (Brehm, Pinto et al. 2002). 

It had also been demonstrated that immunity from a primary infection may offer 

protection from a heterologous secondary infection.  They showed that immunity 

generated from LCMV, Pichinde Virus (PV) and MCMV infections was able to protect 

mice from a lethal vaccinia virus (VV) challenge.  These results were not reciprocal, in 

that VV infection did not confer protection to challenge with the other viruses.  

Protection appeared to depend on changes in the epitope hierarchy and differential 

IFNγ and cytotoxic responses (Selin, Varga et al. 1998).  Our model of heterologous 
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dengue infections shows similar consequences since different patterns of immune 

responses are seen depending on sequence of infection and also these patterns were not 

necessarily seen in the reciprocal serotype sequences. 

The LCMV-VV combinations of infections were also able to cause an 

immunopathology.  Secondary VV infection given i.p. resulted in lesions on the fat pads, 

were intranasal (i.n.) inoculations caused lung pathologies (Selin, Varga et al. 1998; 

Chen, Fraire et al. 2001).  These studies give examples of heterologous immunity causing 

pathogenic effects, much like what is suggested to occur in heterologous secondary 

dengue virus infections.   

 

H.  THE SIGNIFICANCE OF OUR NOVEL MURINE SYSTEM 

Though there have been many mouse models established for the study of dengue 

infections, our murine system offers distinct advantages.  Many laboratories have utilized 

immunodeficient mouse strains such as AG129, SCID, and STAT-1 deficient STAT1–/– 

129/Sv/Ev mice (Table I-1).  The AG129 and STAT1–/– 129/Sv/Ev models have given 

invaluable insight for the role in which interferons play in controlling DENV infection.  

The engrafted-SCID mice have allowed for the establishment of DENV infections in 

human cells in a small animal model.  However, the use of immunodeficient mice does 

not allow for the study of the T cell responses in relation to DENV infection, as our 

model does.  One limitation to our murine system is that there is little or no viral 

replication and our mice do not fall ill.  However, the DENV-induced encephalitis and 

paralysis seen in most dengue disease models are not clinically relevant findings in that 

they do not accurately reproduce what is seen in humans.  Studies in immunocompetent 
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mouse models have reported elevations of serum cytokine levels upon infection, 

neuropathologies, TNFα-mediated death, and transient liver enzyme elevations and 

thrombocytopenia (Table I-1).  Though these models recapitulate some features of 

dengue disease seen in humans, a very high (likely non-physiological) titer of virus has 

been required.  The use of these high doses calls into question the relevance of these 

models to human infections.  Our experiments used a much smaller challenge dose than 

other models to generate an immune response.   

Our model is also the first to study the immune response to sequential 

heterologous DENV infections.  We have shown that serotype-cross-reactive DENV-

specific memory T cells preferentially respond in vivo during secondary infection.  These 

cells enhance the IFNγ and TNFα responses over what is seen in primary infection. In 

humans, this phenomenon has been hypothesized to cause dengue immunopathology (V-

1). 

The advantage of an animal model for dengue, especially inbred mice, is the 

ability to manipulate the immune system to dissect physiological mechanisms. We 

demonstrated that serotype-cross-reactive memory CD4+ T cells enhanced the CD8+ T 

cell cytokine response to secondary DENV infection.  The degree to which these cells 

enhanced the immune response varied depending on the serotype of infection, potentially 

lending some insight into the mechanism of how different sequences of infection result in 

different immunological and clinical outcomes in humans.   

Our system for heterologous dengue infections can be further exploited.  Due to 

its apparent effect on the CD8+ T cell response, the DENV-specific CD4+ T cell response 

needs to be further characterized.  Once MHC Class II-restricted epitopes are defined, it 
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would be possible to investigate the memory CD4+
 T cell population and its effects on the 

CD8+ T cell response to secondary infection in greater detail.  For example, recombinant 

vaccinia viruses could be produced that express a dominant dengue CD4+ T cell epitope.  

After primary immunization with this recombinant virus, a subsequent DENV challenge 

can be administered.  With this experiment, the effect of the CD4+ memory T cells on the 

CD8+
 T cell response can be more definitively evaluated. 

The findings of our study on the immunological response to secondary DENV 

infection suggest several new strategies that might be tested to develop a dengue disease 

model.  In humans, high level viremia appears to be necessary, in addition to T cell 

activation, for the development of DHF. Temporarily abrogating the 

interferon−α response in mice previous immunized with a primary DENV infection by 

administering a blocking anti-interferon-α antibody may lead to robust viral replication in 

the setting of an altered T cell response.  Disease could be measured by visual inspection 

for lethargy, ruffled fur, and neurological signs.  Blood tests would be useful to test for 

thrombocytopenia, hemoconcentration, and cytokine levels.  In addition, vascular leakage 

could be measured using Evan’s blue dye (Huang, Li et al. 2000). 

I.  A MODEL FOR THE IMMUNOPATHOGENESIS OF DENGUE VIRUS 

We and others have proposed that the increased risk for DHF/DSS after 

heterologous secondary dengue infections is due to immunopathological mechanisms.  It 

is hypothesized that an increased production of inflammatory cytokines during the 

immune response resulting from cross-reactive memory cells causes the increased 

vascular permeability and plasma leakage characteristic of severe dengue disease (Hober, 

Poli et al. 1993; Green, Vaughn et al. 1999; Mangada, Endy et al. 2002).  Also, it has 
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been previously demonstrated that altered peptide ligands change the functionality of the 

T cell populations, which may then have a potential immunopathogenic effect (Bashyam, 

Green et al. 2006).  Since the four serotypes of dengue do not share perfect homology, it 

is conceivable that secondary infections of dengue could lead to stimulation of cross-

reactive memory T cells with naturally occurring altered peptide ligands.  This 

stimulation could then change the functional profile of the cells leading to an 

immunopathology.   

The mechanism by which this altered functional response due to cross-reactivity 

occurs is referred to original antigenic sin (Francis 1953; Klenerman and Zinkernagel 

1998).  In dengue infections, a cell with the highest affinity to one particular serotype, 

DENV-2 for example, will be activated upon primary infection with that serotype.  These 

T cells however may be cross-reactive, that is, having an affinity, albeit a lower one, for 

another antigen.  After the infection is cleared, the majority of these effector cells will die 

off, leaving a minority of these cells in the memory pool. (Fig. V-1) These memory cells 

may have a highest affinity for antigen from DENV-2, but may be cross-reactive and also 

have a partial affinity for antigens from another serotype of dengue.   

Upon a heterologous secondary infection, for example DENV-1, not only will 

naïve T cells with the highest affinity for DENV-1 antigen be activated, these cross-

reactive DENV-2 specific memory CD4+ and CD8+ T cells will as well.  Since these 

memory cells have a lower threshold of activation and are presumably more numerous 

than the naïve DENV-1 specific cells, the memory cells will become activated more 

quickly and outnumber the activated DENV-1 specific cells.  In addition, cross-reactive 

memory CD4+ T cells may provide help to the activated CD8+
 T cells.  As a result, there 
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will be a larger number of cells responding during this DENV-1 secondary infection, 

more so than would be in a primary DENV-1 infection, resulting in a massive amount of 

inflammatory cytokines being secreted, such as IFNγ and TNFα  (Fig. V-2).  In humans, 

these cytokines can induce a receptor-mediated change in vascular endothelial cells 

resulting in an increase in vascular permeability, leading to DHF and DSS.  (Fig. V-3)  

Our data shows that after primary infection with dengue, memory CD8+ and CD4+ 

T cells are generated.  These cells may then be cross-reactive with certain other 

heterologous dengue serotypes and not to others.  If the memory T cells are not cross-

reactive, then the immune response to a secondary dengue infection will not be affected 

by the memory T cell pool and this response would mirror that of a primary infection 

with that serotype (Fig. V-1).  However, if the cells are cross-reactive, then the memory T 

cells become activated.  We show that these cross-reactive memory CD8+ T cells respond 

by producing IFNγ and TNFα, ultimately enhancing the overall cytokine response.  We 

also demonstrate that the activated cross-reactive CD4+ T cells are able to provide help to 

the CD8+ T cells, further augmenting the cytokine production.  Our novel mouse model 

allows for the examination of the immunological aspects of dengue infections.  

Therefore, this murine system is a useful model to further study other immunological 

aspects after dengue infection. 
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FIGURE V-1:  A model for the role of T cells in the immunopathology of non-cross-reactive heterologous dengue 
virus infections.  In primary infection, the T cells with the highest affinity for infecting virus, here DENV-2 or DENV-3, 
expand and enter the memory pool (cells with the darker colors).  Upon heterologous secondary infection where no or few 
cross-reactive memory CD4 or CD8 T cells are stimulated, here DENV-2 followed by DENV-3, the cytokine response is 
similar in magnitude to primary infection.  
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FIGURE V-2:  A model for the role of T cells in the immunopathology of cross-reactive heterologous 
dengue virus infections.  In primary infection, the T cells with the highest affinity for infecting virus, here 
DENV-2 or DENV-1, expand and enter the memory pool (cells with the darker colors).  Upon heterologous 
secondary infection, here DENV-2 followed by DENV-1, serotype-cross-reactive memory CD4+ T cells are 
activated to provide help to the CD8+ T cells, the lower affinity memory CD8 T cells expand preferentially, and 
the epitope hierarchy changes; in the case shown, the proportion of cells responding to peptide variant D1/3 NS3 
increases relative to cells specific for variant D2/4 NS3.  This expansion of the memory population results in an 
increase in inflammatory cytokine secretion.
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FIGURE V-3:  A Model for Dengue Immunopathogenesis in Humans.  During a primary DENV infection, T 
cells specific to that particular serotype, here DENV-2, are activated and secrete moderate amounts of 
inflammatory cytokines such as IFNγ and TNFα.  These cytokines induce receptor-mediated changes in the 
endothelial cell junctions and cytoskeleton, resulting in some increase in vascular permeability, though the 
endothelium will remain largely intact and plasma leakage is not clinically evident.  However, during heterologous 
secondary dengue virus infections, here DENV-2 followed by DENV-1, cross-reactive memory T cells from the 
primary infection become preferentially activated and the epitope hierarchy changes.  Activated cross-reactive 
cells CD4+ T cells provide help to CD8+ T cells.  These events lead to an increase in CD8+ T cell activation, and 
greater IFNγ and TNFα secretion.  Vascular permeability drastically increases, resulting in plasma leakage and 
dengue hemorrhagic fever/dengue shock syndrome. 
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