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SUMMARY

Sugars and reÞned carbohydrates are major compo-
nents of the modern diet. ATP-citrate lyase (ACLY)
is upregulated in adipocytes in response to carbo-
hydrate consumption and generates acetyl-coen-
zyme A (CoA) for both lipid synthesis and acetylation
reactions. Here, we investigate the role of ACLY in the
metabolic and transcriptional responses to carbohy-
drates in adipocytes and unexpectedly uncover a
sexually dimorphic function in maintaining systemic
metabolic homeostasis. When fed a high-sucrose
diet, AclyFAT� /� females exhibit a lipodystrophy-like
phenotype, with minimal fat accumulation, insulin
resistance, and hepatic lipid accumulation, whereas
AclyFAT� /� males have only mild metabolic pheno-
types. We Þnd that ACLY is crucial for nutrient-
dependent carbohydrate response element-binding
protein (ChREBP) activation in adipocytes and plays
a key role, particularly in females, in the storage of
newly synthesized fatty acids in adipose tissue. The
data indicate that adipocyte ACLY is important in
females for the systemic handling of dietary carbo-
hydrates and for the preservation of metabolic
homeostasis.

INTRODUCTION

The prevalence of obesity has increased dramatically in recent
decades along with associated metabolic diseases, such as
type 2 diabetes (González-Muniesa et al., 2017). Numerous in-
sights into the molecular mechanisms linking obesity and dia-
betes have been gained through studies of diet-induced obesity
in mice, although these studies have frequently been limited
to males and to diets high in fat. Consumption of re�ned carbo-
hydrates and sugar-sweetened beverages, a risk factor for
2772 Cell Reports 27, 2772–2784, May 28, 2019 ª 2019 The Authors
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diabetes, has risen dramatically in recent decades and is associ-
ated with an elevated relative risk of overall mortality (DeFronzo
et al., 2015; Dehghan et al., 2017). However, the mechanisms
that govern the handling of dietary carbohydrates, and particu-
larly how such mechanisms might differ between males and fe-
males, remain poorly understood.

Acetyl-coenzyme A (CoA) is a central metabolite with key roles
in bioenergetics, lipid biosynthesis, and signaling ( Campbell and
Wellen, 2018; Pietrocola et al., 2015). It is a building block for de
novo synthesis of fatty acids and cholesterol, as well as the
essential acetyl donor for lysine acetylation, a reversible post-
translational modi�cation with key roles in regulating protein sta-
bility, localization, and function (Choudhary et al., 2014; Pietro-
cola et al., 2015). The enzyme ATP-citrate lyase (ACLY) cleaves
citrate to produce acetyl-CoA outside of mitochondria for
glucose-dependent de novo lipogenesis (DNL). In addition to
its role in DNL, ACLY is also a key regulator of histone acetylation
levels in mammalian cells, including in adipocytes (Wellen et al.,
2009). ACLY’s expression is potently regulated by nutrient avail-
ability in adipocytes, with its levels increased upon carbohydrate
consumption and suppressed by dietary fat ( Carrer et al., 2017;
Fukuda et al., 1992; Herman et al., 2012; Jiang et al., 2009), sug-
gesting that ACLY might be important for the cellular response to
dietary carbohydrates.

Our prior work has implicated ACLY in the regulation of histone
acetylation and gene expression in adipocytes ( Carrer et al.,
2017; Wellen et al., 2009; Zhao et al., 2016). Global histone acet-
ylation levels increase during adipocyte differentiation of 3T3-L1
cells, in a manner dependent on ACLY, and speci�c genes, such
as Slc2a4 (hereafter denoted Glut4), encoding the insulin-
responsive glucose transporter GLUT4, are suppressed in the
absence of ACLY (Wellen et al., 2009). Furthermore, upon ge-
netic deletion of Acly from adipocytes in vivo (AclyFAT� /� mice),
both adipose tissue histone acetylation levels and Glut4 mRNA
levels are reduced (Zhao et al., 2016). Adipocyte GLUT4 has
been shown to play an important role in the maintenance of sys-
temic metabolic homeostasis, at least in part through promoting
de novo synthesis of lipid species that exert insulin-sensitizing
.
reativecommons.org/licenses/by-nc-nd/4.0/ ).

mailto:wellenk@upenn.edu
https://doi.org/10.1016/j.celrep.2019.04.112
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.04.112&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


effects (Abel et al., 2001; Herman et al., 2012; Shepherd et al.,
1993; Yore et al., 2014). On a chow diet, however, male
AclyFAT� /� mice exhibited only a mild metabolic phenotype,
despite lower Glut4 mRNA levels and reduced DNL (Zhao
et al., 2016). Nevertheless, these data hinted that ACLY might
play a role in regulating systemic metabolic health through
gene regulation in a context-dependent manner ( Sivanand
et al., 2018).

Using conditional Acly knockout preadipocytes, we analyzed
the role of ACLY in gene expression during adipocyte differenti-
ation, �nding that glucose and fatty acid metabolism gene
expression signatures were strikingly suppressed in the absence
of ACLY. Expression of the constitutively active b isoform of the
glucose-responsive transcription factor carbohydrate response
element binding protein (ChREBP) and ChREBP target genes
was markedly suppressed in the absence of ACLY, suggesting
that ACLY might modulate the transcriptional response to
dietary carbohydrate via ChREBP. These data prompted us
to examine ACLY’s role in the handling of chronic high car-
bohydrate consumption in vivo. The absence of ACLY in adipo-
cytes elicited striking sexually dimorphic phenotypes. Female
AclyFAT� /� mice fed a high-sucrose, zero-fat diet (ZFD) develop
a lipodystrophy-like phenotype, exhibiting extreme leanness,
hepatic steatosis, and insulin resistance. On the same diet,
male AclyFAT� /� mice are leaner than their wild-type (WT) litter-
mates but maintain insulin sensitivity and do not overtly accumu-
late excess lipid in the liver. In response to ZFD feeding, adipo-
cytes of WT females as compared to males express higher
levels of ChREBPb and its target genes, and expression of
ChREBPb is nearly abolished in the absence of ACLY. Consis-
tently, female as compared to male mice are more dependent
on adipocyte ACLY for the storage of de novo synthesized fatty
acids in subcutaneous white adipose tissue (SWAT). Levels of
monomethyl branched-chain fatty acids (mmBCFAs), thought
to be synthesized predominantly in adipose tissue ( Wallace
et al., 2018), are profoundly reduced in AclyFAT� /� mice, consis-
tent with a drastic impairment in adipocyte DNL. When fed
matched high- and low-glycemic index (HGI and LGI, respec-
tively) diets containing some fat, female AclyFAT� /� mice remain
very lean and insulin resistant on both diets compared to WT lit-
termates, indicating the robustness of the phenotype across di-
ets. These data suggest that ACLY and ChREBP engage in a
positive feedback regulatory loop to enable glucose uptake
and DNL in adipocytes, a mechanism that appears to play a
particularly important role in facilitating proper lipid storage in
adipose tissue versus liver and in preserving metabolic homeo-
stasis in females. The �ndings identify a role for ACLY in adipo-
cytes in regulating the complex interaction between diet, sex,
and systemic metabolic homeostasis.

RESULTS

Establishment of a Genetic Model to Study the Role of
ACLY in Gene Regulation in Adipocytes
We previously reported that ACLY regulates the expression of
Glut4 and other glucose metabolism genes in 3T3-L1 adipocytes
(Wellen et al., 2009). Using Aclyf/f preadipocytes isolated from
the stromal-vascular fraction of SWAT of Aclyf/f mice (Carrer
et al., 2017), we aimed to comprehensively de�ne the role of
ACLY in the regulation of gene expression during adipocyte dif-
ferentiation. First, to validate the model, we characterized the ef-
fects of Acly deletion on adipogenesis. Adenoviral administration
of Cre recombinase to Aclyf/f preadipocytes resulted in loss of
Acly mRNA and ACLY protein (Figures S1A and S1B). We previ-
ously showed in mouse embryonic �broblasts (MEFs) that
ACSS2 is upregulated in the absence of ACLY (Zhao et al.,
2016), and consistently, Acss2 was upregulated in preadipo-
cytes upon Acly deletion (Figure S1B). After differentiation,
Glut4 and Adipoq expression were markedly suppressed in
ACLY-de�cient adipocytes, in contrast to Fabp4 and Pparg1,
which were impacted only modestly ( Figure S1C). As expected,
lipid accumulation and glucose-dependent fatty acid synthesis
were suppressed in the absence of ACLY (Figures S1D and
S1E), and global histone acetylation levels increased during
adipocyte differentiation in an ACLY-dependent manner ( Fig-
ure S1F). Altogether, these �ndings broadly recapitulate our prior
�ndings using RNAi to silence ACLY during 3T3-L1 adipocyte
differentiation (Wellen et al., 2009), suggesting that these cells
are a robust tool to evaluate the role of ACLY in gene regulation.

ChREBP b Expression in White Adipocytes Is ACLY
Dependent
We conducted RNA sequencing to comprehensively de�ne the
genes that are responsive to ACLY during adipocyte differentia-
tion (Figure S2A). ACLY de�ciency altered gene expression in
adipocytes, with 336 genes more highly expressed in Aclyf/f

(WT) versusAcly� /� (knockout [KO]) adipocytes and 314 genes
more highly expressed in KO versus WT adipocytes, using a log 2

fold change > 1.5 cutoff (Figure 1A; Table S1). Of genes induced
during adipocyte differentiation, � 20% (210/1,011) were sup-
pressed in the absence of ACLY, suggesting that their induction
during adipogenesis is ACLY dependent (Figure 1A; Table S1). In
contrast, very few genes (only 7) were induced more strongly
during differentiation in the absence of ACLY (Figure 1A; Table
S1). Gene set enrichment analysis of Hallmarks gene sets re-
vealed that an ‘‘adipogenesis’’ signature was suppressed in
KO adipocytes (Figure 1B). However, expression of several
canonical markers of differentiated adipocytes (i.e., Plin2 and
Fabp4) and transcriptional regulators of adipogenesis (Pparg
and Cebpa) within the RNA sequencing (RNA-seq) dataset re-
vealed comparable or only moderately reduced mRNA expres-
sion in KO versus WT adipocytes (Figure 1C). These data sug-
gest that speci�c components of the adipogenesis program,
rather than the program in its entirety, might be responsive to
ACLY (Figure 1C). We noted that metabolic genes, including
those involved in glucose and fatty acid metabolism, were
among those gene sets upregulated during differentiation in an
ACLY-dependent manner (Figures 1B and 1C). Reciprocally, in-
�ammatory genes were prominently upregulated in ACLY-de�-
cient adipocytes, although the majority of these genes were
not differentiation induced ( Figures S2B and 1C). Thus, expres-
sion of many genes involved in glucose and lipid metabolism
are upregulated during adipogenesis in an ACLY-dependent
manner.

Next, to test whether ACLY de�ciency functionally impacts
glucose metabolism in adipocytes, we monitored rates of
Cell Reports 27, 2772–2784, May 28, 2019 2773
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(B) Gene set enrichment analysis (GSEA) analysis of Hallmarks gene sets enriched in WT Ads versus KO Ads.
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See also Figures S1 and S2 and Table S1.
glucose consumption and lactate production during adipocyte
differentiation, �nding that both increased signi�cantly over
the �rst 4 days of differentiation ( Figure 2A). In contrast, in
the absence of ACLY, neither glucose consumption nor lactate
production increased during differentiation. Furthermore, insu-
lin-stimulated glucose uptake was markedly impaired in KO ad-
ipocytes, even though insulin-stimulated AKT phosphorylation
was largely intact (Figures 2B and 2C). Targeted metabolite
analysis in preadipocytes and adipocytes was performed to
assess the levels of glycolytic intermediates during adipocyte
differentiation. Some glycolytic intermediates, including fruc-
tose-bisphosphate (FBP) (F1,6BP and F2,6BP were not distin-
guished), were suppressed in KO adipocytes (Figure 2D). We
also analyzed levels of glycolytic intermediates after acute insu-
lin stimulation and again found that the abundance of FBP was
strongly reduced in the absence of ACLY (Figure 2E). This
result suggests that phosphofructokinase (PFK) activity may
be reduced in KO cells. Although this could possibly due to
allosteric inhibition of PFK by citrate (Garland et al., 1963),
ACLY’s substrate, we did not observe accumulation of citrate
2774 Cell Reports 27, 2772–2784, May 28, 2019
in KO cells (Figures 2D and 2E). Because Pfkfb3 is suppressed
in KO adipocytes (Figure 1C), a more likely explanation is
reduced abundance of the PFK allosteric activator F2,6BP
(Hers and Van Schaftingen, 1982). Acetyl-CoA levels were
found to be higher in KO as compared to WT adipocytes ( Fig-
ures 2D and 2E), which is consistent with our prior �ndings in
MEFs that substantial compensatory acetyl-CoA production
from acetate can occur in the absence of ACLY, resulting in
elevated acetyl-CoA abundance (Zhao et al., 2016). Together,
these �ndings indicate that ACLY facilitates glucose meta-
bolism in cultured adipocytes.

ChREBP is a transcription factor that regulates expression
of fatty acid synthesis genes in a glucose-responsive manner
(Abdul-Wahed et al., 2017). Activation of the ChREBPa isoform
and subsequent expression of constitutively active ChREBP b
occurs in a manner dependent on GLUT4-dependent glucose
uptake in adipocytes (Herman et al., 2012). Considering that
glucose uptake is reduced and fatty acid synthesis genes are
suppressed in the absence of ACLY, we hypothesized that
ACLY might play a role in promoting ChREBP activation in
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adipocytes. Indeed, differentiation-induced ChREBP a expres-
sion was blunted and ChREBPb expression essentially abol-
ished in ACLY-de�cient adipocytes ( Figure 2F). ChREBPb
expression correlates closely with expression of its target genes
(Herman et al., 2012), suggesting that mRNA levels of ChREBPb
re�ect the activity of ChREBP. Indeed, ChREBP target genes,
such as Acaca, Fasn, Thrsp, and Scd1, were also potently sup-
pressed in ACLY-de�cient adipocytes ( Figure 1C). Moreover,
expression of genes occupied by ChREBP in white adipocytes
(Poungvarin et al., 2015) was strongly enriched in WT compared
to KO adipocytes (Figure S2C), further con�rming that ChREBP
activity is dependent on ACLY in adipocytes. Because Acly is
also a transcriptional target of ChREBP, ACLY and ChREBP
may together potentiate a positive feedback loop to promote
glucose uptake and fatty acid synthesis.

Given these �ndings, we next investigated whether ACLY
expression correlates with GLUT4 and ChREBP expression in
human adipose tissue. Although available samples were from
obese individuals in which the ChREBP axis is expected to be
strongly suppressed (Eissing et al., 2013), a strong correlation
was nonetheless observed between ACLY and both GLUT4
and ChREBPa (ChREBPb was undetectable in these samples;
Figures 2G and 2H), consistent with the notion that GLUT4,
ACLY, and ChREBP expression are co-regulated in human
adipose tissue.

Adipocyte ACLY DeÞciency Results in Mild Insulin
Resistance in Young Female Chow-Fed Mice
White adipocyte ChREBPb expression is positively associated
with insulin sensitivity in both mice and humans ( Eissing et al.,
2013; Herman et al., 2012; Tang et al., 2016; Vijayakumar
et al., 2017). We previously found that, although Glut4 levels
and adipose DNL are suppressed in male AclyFAT� /� mice,
the animals exhibited normal adipose histology and body
weights (Zhao et al., 2016). To more comprehensively analyze
the effects of adipocyte ACLY de�ciency on systemic meta-
bolism, we placed male and female AclyFAT� /� and Aclyf/f

littermate controls onto a standard chow diet upon weaning
and studied them over 16 weeks (to 20 weeks of age). Female
AclyFAT� /� mice initially exhibited slightly slower weight gain
but later caught up to WT controls, and no differences in
body composition between genotypes were observed at
20 weeks of age (Figures S3A and S3B). No differences in
body weight or body composition were noted between geno-
types in males (Figures S3A and S3B). In male mice, no signif-
icant differences in insulin or glucose tolerance were detected
throughout the study (Figures S3C–S3E). In contrast, young
female AclyFAT� /� mice (after 4 weeks of chow feeding) were
insulin resistant as determined by insulin tolerance test
(Figure S3D). Interestingly, in somewhat older female mice,
no signi�cant differences in glucose or insulin tolerance
were detected between genotypes ( Figures S3C and S3E).
Consistent with our prior �ndings in male adipose tissue
(Zhao et al., 2016), we observed that Acss2 and Fasn were
upregulated in both male and female AclyFAT� /� mice (Fig-
ure S3F). Together, the data indicate that mild insulin resis-
tance develops in young female, but not male, AclyFAT� /�

animals on a chow diet.
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Female Acly FAT� / � Mice Are Lipodystrophic and Insulin
Resistant on a High-Sucrose Diet
Given that ACLY is upregulated by dietary carbohydrate con-
sumption (Fukuda et al., 1992; Herman et al., 2012) and pro-
motes ChREBP activity, at least in vitro (Figure 2), we hypothe-
sized that adipocyte ACLY might play a larger role in the
maintenance of metabolic homeostasis in response to chronic
high-carbohydrate consumption. To test this, we placed male
and female WT and AclyFAT� /� littermate mice on a zero-fat
high (60%)-sucrose diet (ZFD) upon weaning and monitored
them over 16 weeks. Surprisingly, male mice were relatively un-
perturbed by the lack of adipocyte ACLY, even on this highly
lipogenic diet. In male mice, body weight and blood glucose
were not signi�cantly different between genotypes, although
analysis of body composition revealed that the AclyFAT� /� males
had a lower percentage of body fat than their WT counterparts
(Figures 3A and 3B). In contrast to the males, females consuming
ZFD were severely impacted by the absence of ACLY in adipo-
cytes. Among females, body weight differences emerged within
2 weeks of beginning the ZFD (Figure 3A). Female AclyFAT� /�

mice were extremely lean with a mean of <5% body fat at the
end of the study and only � 1 g of total body fat per animal, a
marked reduction as compared to their WT littermates ( Fig-
ure 3B). Leptin levels were signi�cantly reduced in female
AclyFAT� /� mice and strongly trending toward reduced in male
AclyFAT� /� mice, re�ecting the lower adiposity ( Figure 3C).

We also investigated the effects of ACLY de�ciency on
glucose homeostasis. AclyFAT� /� females, but not males, dis-
played a mild increase in blood glucose levels (Figure 3D).
Glucose tolerance tests revealed that mice fed a ZFD adapt to
the chronic high load of sugars, and WT male and female animals
displayed only a mild rise in blood glucose levels when injected
with 2 mg/kg glucose ( Figure 3E), as compared to that on chow
diet (Figure S3C). AclyFAT� /� male mice exhibited no differences
in glucose tolerance from WT males, and AclyFAT� /� females dis-
played higher blood glucose levels at baseline and almost no
response at all to the bolus injection of glucose compared to their
WT counterparts (Figure 3E). Insulin levels were elevated in both
male and female AclyFAT� /� mice (Figure 3F), and female, but not
male, AclyFAT� /� mice were markedly insulin resistant on ZFD, as
assessed by insulin tolerance test (Figure 3G). Thus, ZFD feeding
revealed strong sexual dimorphism in metabolic phenotypes in
the absence of adipocyte ACLY. These data suggest that adipo-
cyte ACLY plays a key role in coordinating systemic handling of
dietary carbohydrates, particularly in females.

Sex Differences in ChREBP b Levels and Dependence on
ACLY for Deposition of De Novo Synthesized Fatty Acids
in Adipose Tissue
To gain insight into the mechanisms that might account for the
differential sensitivity of females to adipocyte ACLY de�ciency,
we examined gene expression patterns. In vitro analysis in
cultured adipocytes had suggested that ACLY plays a role in
suppressing in�ammatory gene expression and in promoting
lipogenic gene expression (Figure 1). In�ammation within WAT
can contribute to metabolic dysfunction ( Hotamisligil, 2017),
and we noted that adipocyte size was more heterogeneous in
ACLY-de�cient SWAT and pgWAT and that there was evidence
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Figure 3. Female Acly FAT� / � Mice Are Very Lean and Insulin Resistant on a High-Sucrose, Zero-Fat Diet
(A–G) Upon weaning, male and femaleAclyFAT� /� mice were fed a high-sucrose, zero-fat diet (ZFD) and monitored for 16 weeks.
(A) Body weights in females (left panel) and males (right panel), analyzed by two-way ANOVA.
(B) Body composition measure by MRI after 16 weeks on ZFD.
(C) Serum leptin levels at 16 weeks on ZFD.
(D) Blood glucose levels (6 h fasting) in females (left panel) and males (right panel).
(E) Glucose tolerance test (GTT) after 12 weeks on ZFD in females (left panel) and males (right panel).
(F) Insulin levels (ad lib fed).
(G) Insulin tolerance test (ITT) after 14 weeks on ZFD in females (left panel) and males (right panel).
For all panels except ELISAs, n = 6 female Aclyf/f, n = 7 female AclyFAT� /� , n = 6 male Aclyf/f, n = 7 male AclyFAT� /� . For leptin ELISA, n = 5 female Aclyf/f, n = 6
female AclyFAT� /� , n = 4 male Aclyf/f, n = 4 male AclyFAT� /� . For insulin ELISA, n = 4 femaleAclyf/f, n = 5 female AclyFAT� /� , n = 4 male Aclyf/f, n = 4 AclyFAT� /� . Error
bars depict mean ± SEM for all panels. Statistics by two-tailed t test, unless ANOVA is indicated for panel. *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S3.
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for increased presence of non-adipocyte cell types ( Figure 4A).
In�ammatory gene expression indeed tended to be elevated in
the absence of ACLY in WAT, although sex did not obviously
modify this phenotype (Figure 4B), suggesting that differences
in chronic in�ammation are unlikely to account for the sex differ-
ences in metabolic responses. On the other hand, ChREBPb
expression was strikingly higher in WT female than male mouse
WAT, and in both males and females, expression was nearly un-
detectable in the AclyFAT� /� SWAT and pgWAT (Figures 4C and
4D). Consistently, ChREBP targets, including Fasn, Acly, and
Thrsp, were more highly expressed in WT females than males
in SWAT, and expression of each was severely reduced in
AclyFAT� /� animals (Figures 4C and 4D). Notably, the effect of
Acly deletion on fatty acid metabolism genes was opposite on
ZFD (Figure 4D) to that observed on chow diet ( Figure S3F), likely
re�ecting the fact that ChREBP b is lowly expressed on chow diet
(Vijayakumar et al., 2017). Interestingly, the impact of ACLY on
fatty acid metabolism gene expression on ZFD closely recapitu-
lated that observed in cultured adipocytes grown under high-
glucose conditions (Figure 1). Acss2 showed a distinct pattern,
in that it was suppressed in female, but not male, AclyFAT� /�

mice on ZFD (Figure 4D). Together, the data indicate that, in
response to chronic high-sucrose feeding, the ChREBP pathway
is more strongly activated in females than in males and that its
activation in WAT is dependent on ACLY.

Female adipose tissue has been previously shown to be more
lipogenic than male adipose tissue in mice (Macotela et al.,
2009), and ChREBP expression in human adipose tissue is
higher in females than males (Eissing et al., 2013), consistent
with our �ndings in mice. We therefore investigated whether
adipocyte ACLY de�ciency differentially impacts de novo fatty
acid synthesis in males and females in vivo. To do this, mice
were administered 2H2O via bolus intraperitoneal (i.p.) injection
and addition to drinking water for 1 week, and incorporation of
deuterium atoms into de novo synthesized fatty acids was
analyzed within WAT. The presence of de novo synthesized fatty
acids in WAT represents that synthesized within WAT along with
that synthesized elsewhere (i.e., in the liver) and transported to
fat. When comparing WT males and females, despite the differ-
ences in ChREBP activation between the sexes, we did not
observe a sex difference in either the total pool sizes of fatty
acids per gram tissue or the fraction of de novo synthesized fatty
acids in SWAT (Figures 4E and 4F). This could possibly re�ect a
greater contribution from fatty acids made in the liver and trans-
ported to fat in male mice, which could obscure sex differences
in WAT DNL. Regardless, ACLY de�ciency in SWAT markedly
reduced the presence of de novo synthesized fatty acids, and
the reduction in fractional synthesis of major fatty acid species
in ACLY-de�cient SWAT was greater in female than male mice,
indicating that, on ZFD, female mice are more dependent on
(F) Abundance of saponi�ed fatty acids in SWAT per mg tissue.
(G) Abundance of saponi�ed fatty acids in serum.
(H) Abundance of saponi�ed fatty acids in liver.
Error bars depict mean ± SEM for all panels. For all panels, n = 6 femaleAclyf/f, n =
tailed t test; asterisks depict analysis between genotypes: *p < 0.05; **p < 0.01; ***p
###p < 0.001. See also Figure S4.
adipocyte ACLY for accumulation of newly synthesized fatty
acids in WAT than male mice (Figure 4E). This could re�ect either
less transport of fatty acids from liver or lesser ability to compen-
sate for ACLY de�ciency within adipocytes in females.

We therefore next investigated whether compensation for
ACLY de�ciency in males occurs intrinsically within adipose tis-
sue. Monomethyl branched chain fatty acids (mmBCFAs) are
synthesized predominantly in adipose tissue and thus may pro-
vide a signature for adipocyte DNL (Wallace et al., 2018). Total
abundance and fractional synthesis of the mmBCFA isoC16:0
were strikingly and comparably suppressed in males and fe-
males in the absence of ACLY in SWAT (Figures 4E, 4F, S4A,
and S4B). In serum and in liver, mmBCFA abundance was also
potently suppressed in the AclyFAT� /� animals (Figures 4G and
4H), supporting the model that mmBCFAs present in serum
and liver were originally synthesized in fat (Wallace et al.,
2018). Thus, in the context of high-sucrose feeding, both sexes
rely on ACLY for DNL within adipocytes, but males may store
more hepatic synthesized fatty acids within SWAT, potentially
rendering them less dependent on adipocyte ACLY for metabolic
health.

In examining the livers, male AclyFAT� /� mice exhibited upre-
gulation of FASN at both the mRNA and protein levels in liver
as compared to WT males, suggesting that male liver may upre-
gulate DNL to compensate for reduced adipose DNL ( Figures 5A
and 5B). ChREBPb and DNL genes were more highly expressed
in female as compared to male ZFD-fed animals (Figures 5A and
5B), and females also accumulated more hepatic lipid than
males on ZFD (Figure 5C). Together, these data indicate that,
in females, ACLY-dependent DNL in adipocytes plays a key
role in ensuring proper lipid storage in adipose rather than liver.

Matched High- and Low-Glycemic-Index Diets Reveal a
Key Role of Adipocyte ACLY in Systemic Metabolic
Homeostasis in Females that Is Accentuated by
Consumption of High-Glycemic-Index Carbohydrates
Re�ned diets as compared to natural diets have been shown to
have diverse effects on metabolism (Dalby et al., 2017). Thus,
use of appropriately matched control diets is crucial for assess-
ing the roles of speci�c nutrients in contributing to metabolic
phenotypes. To test the robustness of the role of adipocyte
ACLY in metabolic regulation in females, as well as the role of
glycemic load in contributing to metabolic phenotypes, we
used high- and low-glycemic-index diets matched for total
protein (21.1% kcal), carbohydrate (62.2% kcal), and fat
(16.6% kcal) content (Coate and Huggins, 2010). Carbohydrates
in the HGI diet were from the easily digested starch amylopectin,
and the LGI diet contained high amylose starch that is resistant
to digestion (Coate and Huggins, 2010). On both diets, body
fat was very low in the absence of adipocyte ACLY, and total
7 female AclyFAT� /� , n = 6 male Aclyf/f, n = 7 male AclyFAT � /� . Statistics by two-
< 0.001; number symbols depict analysis between sexes: #p < 0.05; ##p < 0.01;

Cell Reports 27, 2772–2784, May 28, 2019 2779



Male Female

Acly
f/f

Acly
FAT -/-

Acly 
f/f

Acly 
FAT -/-

S6

ACLY

ACSS2

FASN

Female

Male

Acly
f/f

Acly
FAT -/-

A

B

C

Chr
eb

p �

Chr
eb

p �

Chr
eb

p t
ota

l
Acly

Acs
s2

Acc
1

Fa
sn

0.1

1

10

100

R
el

at
iv

e
ex

pr
es

si
on

Female Acly f/f

Female Acly FAT-/-

Male Acly f/f

Male Acly FAT-/-

##

######

##

##

##

##

*
*

* **

Figure 5. Female, but Not Male, Acly FAT� / � Mice Develop Hepatic
Steatosis on ZFD
(A–C) Analysis of livers ofAclyf/f and AclyFAT� /� mice after 16 weeks on ZFD.
(A) qPCR analysis of expression of fatty acid synthesis genes in liver; error bars
represent mean ± SEM n = 6 female Aclyf/f, n = 7 female AclyFAT� /� , n = 6 male
Aclyf/f, n = 7 male AclyFAT� /� . Statistics by two-tailed t test; asterisks depict
analysis between genotypes: *p < 0.05; **p < 0.01; ***p < 0.001; number
symbols depict analysis between sexes: #p < 0.05; ##p < 0.01; ###p < 0.001.
(B) Western blot analysis of protein levels in liver.
(C) Representative histology of livers; scale bars represent 75 mm.
body weight was signi�cantly lower in AclyFAT� /� mice on the
HGI diet (Figures 6A–6D). Glucose tolerance on the HGI diet
was comparable to that observed on ZFD, with only a minimal
response to bolus glucose injection ( Figure 6E). In contrast,
LGI-fed mice exhibited a spike in blood glucose levels in
response to glucose injection, similar to that on chow diet, and
modestly impaired glucose clearance was observed in the
AclyFAT� /� mice (Figure 6F). On both diets, AclyFAT� /� females
exhibited impaired response to insulin (Figures 6G and 6H). Liver
histology revealed marked steatosis on HGI as compared to LGI,
along with elevated expression of DNL gene expression (Figures
6I–6K). Hepatic lipid accumulation was further enhanced in the
2780 Cell Reports 27, 2772–2784, May 28, 2019
absence of ACLY (Figures 6I and 6J). On all three re�ned diets
tested (ZFD, HGI, and LGI), AclyFAT� /� females are very lean
and insulin resistant and accumulate hepatic lipid, reminiscent
of a lipodystrophic phenotype. The data indicate that adipocyte
ACLY plays a robust role in mediating the proper storage of lipid
in adipose tissue versus in the liver in females and in preserving
metabolic homeostasis.

DISCUSSION

In this study, we identify a sexually dimorphic role for adipocyte
ACLY in the regulation of systemic metabolic homeostasis. On
three different carbohydrate-rich de�ned diets (ZFD, HGI, and
LGI), ACLY de�ciency in adipocytes results in extreme leanness,
as well as insulin resistance and hepatic lipid accumulation in fe-
male mice. Although male AclyFAT� /� mice fed ZFD are also
somewhat leaner than their WT littermates, they are largely pro-
tected from insulin resistance and hepatic steatosis. Mechanis-
tically, we observe that ChREBP is more potently activated in
the adipose tissue of female as compared to male mice in
response to high sucrose consumption and that expression of
ChREBPb is severely blunted in the absence of ACLY. Consis-
tently, female adipose tissue is more dependent on adipocyte
ACLY and DNL for storage of de novo synthesized fatty acids
than male adipose tissue. Because Acly is also a transcriptional
target of ChREBP, the �ndings suggest that an ACLY-ChREBP
positive feedback loop in adipocytes plays an important role in
the handling of dietary carbohydrates to allow proper synthesis
and storage of lipids in adipose tissue and to preserve systemic
metabolic homeostasis, particularly in females.

Although it is well known that sex differences exist in glucose
and lipid metabolism (Karastergiou and Fried, 2017; Link and
Reue, 2017; Varlamov et al., 2015), the molecular players remain
relatively poorly de�ned. The identi�cation of ACLY as a partici-
pant in sexually dimorphic metabolic phenotypes represents a
step toward understanding the sex differences in glucose and
lipid metabolism and could potentially inform therapeutic strate-
gies, because ACLY is being investigated as a therapeutic target
for metabolic diseases (Pinkosky et al., 2017; Ray et al., 2019;
Wei et al., 2019). Females generally favor lipid storage over
oxidation (Link and Reue, 2017; Varlamov et al., 2015), and there
is evidence in both humans and mice that lipid synthesis is higher
in adipose tissue in females (Edens et al., 1993; Macotela et al.,
2009). Furthermore, familial partial lipodystrophy in humans
more profoundly perturbs metabolism in females than in males
(Garg, 2000; Haque et al., 2003; Savage, 2009; Vigouroux
et al., 2000), consistent with the notion that proper lipid storage
in adipose tissue is particularly crucial in females for metabolic
health, potentially driven by an evolutionary need for females
to maintain adequate fat storage for survival and/or reproduc-
tion. Sex hormones are major, although not the only, mediators
of sex differences in metabolism (Link and Reue, 2017). Estradiol
(E2) has been shown to protect against HFD-induced insulin
resistance (Camporez et al., 2013). On the other hand, female
sex hormones were reported to account for only a small propor-
tion of gene expression differences in WAT between male and fe-
male mice (Grove et al., 2010). Glut4 expression, for example, is
higher in female WAT and not altered by ovariectomy (Grove
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Figure 6. Female Acly FAT� / � Mice Are Insulin Resistant on Both LGI and HGI Diets but Accumulate More Hepatic Lipid when Consuming HGI
Carbohydrates
(A–K) Upon weaning, femaleAclyf/f and AclyFAT� /� mice were fed matched high- or low-glycemic-index (HGI or LGI, respectively) diets for 16 weeks.
(A and B) Body weights on HGI (A) and LGI (B) diet, respectively, analyzed by two-way ANOVA.
(C and D) Body composition measure by MRI after 16 weeks on HGI (C) and LGI diets (D).
(E and F) GTT after 11 weeks on HGI (E) and LGI (F) diets.
(G and H) ITT after 14 weeks on HGI (G) and LGI (H) diets.
(I) Representative liver histology; scale bars represent 50 mm.
(J) Triglyceride levels in HGI-fed mice.
(K) qPCR gene expression analysis in liver.
For HGI diet, n = 8 female Aclyf/f, n = 8 female AclyFAT� /� . For LGI diet, n = 7 female Aclyf/f, n = 8 AclyFAT� /� . For all panels, error bars indicate mean ± SEM.
Statistics by two-tailed t test unless ANOVA is indicated for panel. *p < 0.05; **p < 0.01; ***p < 0.001.
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et al., 2010). Moreover, although adipose DNL was reduced by
ovariectomy in female mice, this seemed to be secondary to
weight gain rather than through direct effects of E2 on adipose
tissue (Macotela et al., 2009). Androgens could also potentially
participate in the phenotypes observed, as reduced testos-
terone levels are associated with increased hepatic lipid accu-
mulation (Jia et al., 2018; Nikolaenko et al., 2014; Senmaru
et al., 2013). Thus, an important but also complicated direction
for the future investigation will be to de�ne the roles of androgens
and estrogens in mediating sex differences in metabolism and
gene regulation in adipose and liver.

A related question is why females are more dependent than
males on ACLY for the storage of de novo synthesized fatty acids
in adipose tissue. Interestingly, although synthesis of mmBCFAs
(which are thought to be synthesized only in adipose tissue; Wal-
lace et al., 2018) is comparably suppressed in both male and fe-
male knockout mice, the presence of other newly synthesized
fatty acids (which can be made in fat or liver) in adipose tissue
is more strongly suppressed in female than male knockout ani-
mals. These data suggest that females may conduct a greater
percentage of whole-body de novo lipogenesis within adipo-
cytes than males in the context of high carbohydrate feeding.
This model could be further tested through genetic approaches
that interfere with hepatic de novo lipogenesis and/or innovative
isotope tracing approaches that distinguish adipose and liver
DNL.

Another intriguing observation made in the course of this work
is that, although female AclyFAT� /� mice were very lean and insu-
lin resistant on three different re�ned diets, on a natural ingre-
dient chow diet with similar carbohydrate and fat content as
the LGI and HGI diets, they were at least partially protected
from adverse metabolic phenotypes. Numerous differences
exist between natural and re�ned diets. Re�ned diets have
been shown, for example, to profoundly in�uence the gut micro-
biota (Dalby et al., 2017), potentially impacting levels of microbial
products, such as acetate. In addition, the natural chow diet
contains high amounts of soy, and it is conceivable that soy phy-
toestrogens might modify sexually dimorphic phenotypes. The
chow diet also contains animal-derived fat, and it is also possible
that ingestion of bioactive lipid species, potentially including
mmBCFAs, could also modify these phenotypes. These possibil-
ities will be investigated in future studies.

In sum, these �ndings identify adipocyte ACLY as an upstream
regulator of ChREBP activity in adipocytes and, particularly in
females, in promoting the proper distribution of lipid storage in
adipose tissue versus the liver and in maintaining metabolic
homeostasis. Sex differences in glucose and lipid metabolism
have been understudied to date, and the �ndings of this study
advance knowledge of the complex interaction between diet,
sex, and systemic metabolism.
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STAR+ METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

p-AKT-S473 Cell Signaling S473-(D9E) XP Cat# 4060;
RRID: AB_2315049

AKT Cell Signaling Cat# 9272; RRID: AB_329827

pS6 Cell signaling Cat#9205S; RRID: AB_330944

S6 Cell signaling 5G10 Cat. No. 2217; RRID: AB_331355

pACLY-S455 Cell Signaling Ser455 #4331; RRID: AB_2257987

ACLY ProteinTech Cat. No. 15421-1-AP; RRID: AB_2223741

ACSS2 Cell Signaling Cat#3658; RRID: AB_2222710

FASN Cell Signaling Cat#3189; RRID: AB_2100798

C/EBPb Santa Cruz sc-150; RRID: AB_2260363

PPARg Cell Signaling Cat# 2430; RRID: AB_823599

TUBA1A Sigma Aldrich T6199; RRID: AB_477583

H3K9-ac Active motif Cat#61251; RRID: AB_2793569

H3K27-ac Abcam Cat# Ab4729; RRID: AB_2118291

H4K5-ac Millipore Cat# 07-327; RRID: AB_310523

H4K8-ac Millipore Cat# 07-328; RRID: AB_11213282

H4K12-ac Active Motif Cat# 39165; RRID: AB_2615075

H3 Millipore Cat# 06-599; AB_2115283

Biological Samples

Male and female subcutaneous and visceral
adipose tissue samples

Penn DRC Human Adipose Resource See table in Experimental Model
and Subject Details

Adeno-CRE virus University of Pennsylvania Vector Core N/A

Chemicals, Peptides, and Recombinant Proteins

Aspartic Acid Cambridge Isotope Labs CNLM-544-H-PK

Glutamic Acid Sigma-Aldrich 607851

Fumaric Acid Cambridge Isotope Labs CLM-1529-PK

Succinic Acid Sigma-Aldrich 491985

Malonic Acid TRC Canada M158009

Fructose 6-Phosphate TRC Canada F792577

Citric Acid Sigma-Aldrich 606081

Fructose 1,6-Bisphosphate TRC Canada F792571

DMEM/F12 media GIBCO 11320-033

10% heat inactivated fetal bovine
serum (hiFBS)

GIBCO 10438-018

0.05 mM isobutymethylxanthine Sigma-Aldrich I-7018

10 mm dexamethasone (Sigma-Aldrich,), Sigma-Aldrich D-1881

5 mm troglitazone (Sigma-Aldrich,), Sigma-Aldrich T-2573

5 mg/ml insulin (Sigma-Aldrich,) Sigma-Aldrich I-5500

Critical Commercial Assays

Mouse Leptin 96-Well Plate Assay Millipore EZML-82K

The Ultra-Sensitive Mouse Insulin ELISA kit Crystal Chemical Catalog #90080

Triglyceride Colorimetric Assay Kit Cayman Chemical Item No 10010303

Deposited Data

Acly f/f and Acly � /� preadipocytes &
adipocytes RNA-seq

This study GEO: GSE120504

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

Acly f/f preadipocytes isolated from
male mice

Carrer et al., 2017 N/A

Experimental Models: Organisms/Strains

Aclyf/f and Adiponectin-Cre;Acly f/f

(AclyFAT� /� ) mice
Zhao et al., 2016 Aclyf/f and AclyFAT� /�

Oligonucleotides

Q-PCR Primers see Table S2 N/A N/A

Software and Algorithms

Microsoft Excel Microsoft Version 2016

Prism GraphPad Software Version 7

Adobe Illustrator Adobe Version 6 and CC

Microsoft Word Microsoft Version 2016

Gene Cluster 3.0 de Hoon et al., 2004 Version 3.0 http://bonsai.hgc.jp/
� mdehoon/software/cluster/

Java TreeView Saldanha, 2004 http://jtreeview.sourceforge.net

GSEA Subramanian et al., 2005 http://software.broadinstitute.org/
gsea/index.jspMootha et al., 2003

Other

62% Sucrose Diet (No Fat) Envigo TD.0331

Low Glycemic: 50% Hi-Maize Diet
(Resistant)

Envigo TD.06138

High Glycemic: 50% Amioca Diet
(Amylopectin)

Envigo TD.06136

Laboratory Autoclavable Rodent Diet 5010 LabDiet 0001326
CONTACT FOR REAGENT AND RESOURCE SHARING

Information and requests for reagents may be addressed to the Lead Contact, Kathryn E. Wellen ( wellenk@upenn.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice and diets
All animal studies were carried out in accordance with the IACUC guidelines of the University of Pennsylvania. Adipocyte speci�c
knock out (KO) of Acly (Adiponectin-Cre; Acly f/f mice) were reported previously (Zhao et al., 2016), and were backcrossed at least
8 times to C57Bl6/J. Male and female mice were both used in experiments, as indicated in each study. Mice were weaned between
3-4 weeks of age, genotyped, and started on the indicated diets (chow, ZFD, HGI or LGI) diets between 4-5 weeks of age. The LGI
and HGI diets were prepared by Envigo using Hi-Maize � 260 resistant starch (LGI) and Amoica � starch (HGI) starches provided by
Ingredion Incorporated. Mice were group housed in a temperature controlled environment (22 � C) on a 12h light/12h dark cycle. Mice
were maintained on speci�ed diets for the entirety of the study (16 weeks), after which they were sacri�ced and tissues collected.
Mice had ad libitum access to food and water and were monitored routinely for health status. Weight for each mouse was monitored
throughout the study, and blood glucose in 6-hour fasted animals measured by glucometer at indicated time points. Two-way
ANOVA analysis was performed to assess differences in body weight between genotypes.

Cells lines
Aclyf/f preadipocytes (5A cells) were previously reported (Carrer et al., 2017).Acly� /� pre-adipocytes were generated by infecting the
5A Aclyf/f cells with Adeno-Cre virus. Deletion was con�rmed by western blotting.

Human Adipose Samples
Abdominal subcutaneous or omental adipose tissue biopsies were obtained from individuals undergoing surgery with informed con-
sent obtained after the nature and possible consequences of the studies were explained under protocols approved by the Institu-
tional Review Boards of the Perelman School of Medicine at the University of Pennsylvania. These samples were collected by the
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Human Metabolic Tissue Bank and provided in a de-identi�ed manner for these studies. Patient data for the samples used are pro-
vided below.
Subject # Sex Adipose Depot Age BMI

3 M SQ 37 53.16

3 M V 37 53.16

24 M SQ 38 53.81

24 M V 38 53.81

42 F SQ 34 44

42 F V 34 44

139 F SQ 43 62.92

139 F V 43 62.92

143 F SQ 51 37.57

143 F V 51 37.57

146 F SQ 38 46.48

146 F V 38 46.48

172 M SQ 45 60.6

172 M V 45 60.6

181 M SQ 50 39.04

181 M V 50 39.04

189 F SQ 39 46.15

189 F V 39 46.15

204 M SQ 37 43.58

204 M V 37 43.58
METHOD DETAILS

Glucose tolerance test
Mice were individually housed, fasted overnight for 16 h and weighed to determine the amount of glucose needed for a 2.0 g/kg in-
jection. D-glucose (Sigma Aldrich, G8270) solution for injection was prepared at concentration of 200 mg/ml in advance using ster-
ilized water. The blood glucose each mouse was determined by glucometer at time 0 from the tail vein. 2.0 g/kg glucose was injected
intraperitoneally into each mouse, staggering injections at 1 mouse per minute. Blood glucose was then measured at 15, 30, 60, 90,
and 120 min after the initial glucose injection for each mouse.

Insulin tolerance test
Mice were individually housed overnight to allow acclimation and fasted for 4 h the morning of test. Each mouse was weighed and
insulin dose (0.75 U/kg body weight) was calculated. Insulin was prepared at 0.1 U/ml in advance in PBS. Blood glucose for each
mouse was measured at time 0 by glucometer from the tail vein. 0.75 IU/kg insulin solution was injected intraperitoneally of each
mouse, staggering injections at 1 mouse per minute. Blood glucose was measured at 30, 60, and 120 min after insulin injection
with glucometer.

Body Composition
Body composition was measured via NMR at the Mouse Phenotyping, Physiology and Metabolism Core at the University of
Pennsylvania.

Serum Insulin and Leptin
Serum leptin and insulin levels were measured using mouse leptin 96-well plate assay (Millipore, EZML-82K) and the ultra-sensitive
mouse insulin ELISA kit (Crystal Chemical, 90080) respectively, following manufacturers’ instructions.

Triglyceride Assay
Triglyceride levels in the liver were measured using the colorimetric 96-well plate assay (Cayman Chemical, Item # 10010303)
following the manufactures’ instructions.
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Histology
Tissue was �xed overnight in 10% formalin phosphate (Fisher Chemical, SF100). Liver, subcutaneous and perigonadal white adipose
tissue samples was processed, embedded, and sectioned (5 mm) at the Pathology Core Laboratory at the Research Institute at
Children’s Hospital of Philadelphia. Sections were stained with H&E and imaged using a light microscope.

cDNA Synthesis and Quantitative PCR
1 mg of mRNA was retrotranscribed using High Capacity RNA-to-cDNA (Applied Biosystems, 4387406). cDNA samples were diluted
1:20 and used as a template in Power SYBR Master Mix (ABI4367659), and DNA was ampli�ed using the ViiA-7 real-time PCR sys-
tem. All primers anneal at 60� C. Primer sequences used are listed Table S2.

Western Blots
Snap-frozen tissue (about 100 mg) was mechanically dissociated in RIPA buffer using TissueLyser (QIAGEN). Cultured cells were
lysed in RIPA buffer. The lysates were sonicated at 30% duty cycle and an output control setting of 3– 4 as previously described
(Carrer et al., 2017). The sonicated samples were pelleted for 5 min and 16,000 relative centrifugal force, and the supernatant
was collected and quanti�ed by BCA assay (Thermo Scienti�c). Samples were prepared for western blotting analysis through Invi-
trogen NuPAGE and BOLT gel systems.

Adipocyte Differentiation
5A cells were differentiated as previously described with a few modi�cations ( Carrer et al., 2017). 5A Aclyf/f and Acly� /� cells were
seeded at 2 3 105 cells/well in 12-well plates in DMEM/F12 media with 10% heat inactivated fetal bovine serum (hiFBS). Culture
medium was replaced with induction medium (DMEM/F12, 10% hiFBS, 0.05 mM isobutylmethylxanthine (IBMX), 10 mm dexameth-
asone, 5 mm troglitazone, 5 mg/ml insulin 4 days after seeding. 3 days after induction, Induction Medium was replaced with Mainte-
nance Medium (DMEM/F12, 10% hiFBS, 5 mg/ml insulin).

Oil Red O
Cells (4 days after induction of differentiation) were washed in PBS then �xed in 4% paraformaldehyde at room temperature for
30 min. Cells were then washed 3 times in dH2O then washed once in 60% isopropanol. Cells were stained for 30 min in Oil
Red O, incubating at 37� C. Stain was removed by washing with dH2O 4 times. Pictures of the wells were then taken. For quanti�-
cation, cells were washed 3 times in 60% isopropanol, with gentle rocking in between washes. Oil Red O was extracted in 0.5 mL
100% Isopropanol. Absorbance was measured at 492 nm.

Histone Analysis
Cells were differentiated to day 3 and histones prepared by acid extraction, as previously described ( Lee et al., 2014). Protein was
quanti�ed and histones analyzed by western blot.

RNA-sequencing
RNA was isolated using Trizol as per manufacturer instruction. RNA was then prepared for sequencing with the Illumina TruSeq Kit
and the high sample protocol on the TruSeq stranded mRNA sample preparation guide. Sequencing was performed using the
NextSeq 500/550 mid Output kit v2 (150 cycles).

Heatmap Analysis and Clustering
All genes that had a q-value < 0.05 and an average FPKM log2 Fold Change > 1.5 when comparing between any two conditions were
included in the heatmap. Gene Cluster 3.0 (http://bonsai.hgc.jp/ � mdehoon/software/cluster/cluster3.pdf ) was used to cluster genes
and Java Tree Viewer to generate the heatmap shown in Figure S2A. The log2 values for each gene were ‘‘centered’’ by subtracting
the mean value for each gene across all samples. Genes and samples were then clustered using average linkage. Average linkage
computes the ‘‘distance’’ between two genes or samples as the mean of all pairwise differences between all genes or samples con-
tained in that item. The distance metric selected to compute the similarity between genes and samples was ‘‘correlation (uncen-
tered).’’ Clustering and values were visualized using Java Tree Viewer.

GSEA
All genes satisfying the parameters described for heatmap inclusion were queried for enrichment against Hallmark gene sets using
the Broad Institute molecular signatures database (MSigDB) gene set enrichment (GSEA) desktop application (Subramanian et al.,
2005). The ChREBP gene set containing the top 1000 loci at which ChREBP was found by ChIP-seq to bind in WAT (Poungvarin et al.,
2015) was kindly provided by the corresponding author Dr. L. Chan. The input �le for GSEA contained the described genes along with
FPKM values. GSEA permutation type was set to ‘‘Gene Set,’’ which is the setting recommended if there are less than 7 samples
within each phenotype.
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Venn Diagram Analysis
Adipogenesis induced genes were de�ned as genes that were increased in WT Ad versus WT Pre-Ad based on a log2 Fold change >
1.5 and q-value < 0.25. ACLY-dependent and ACLY-suppressed genes were de�ned as genes that were increased or decreased,
respectively, in WT Adipocytes versus KO Adipocytes, based on log2 fold change > 1.5 and q value < 0.25.

YSI Metabolite Analysis
Cells were differentiated to day 4 as described above. Media was collected on day 0, day 2, and day 4 for analysis. Glucose and
lactate measurements were compared to wells plated with no cells to calculate metabolic consumption, as previously described
(Lee et al., 2014). Data were normalized to endpoint protein content.

Insulin Stimulation
5A Aclyf/f and Acly� /� cells were differentiated to day 4 and then serum starved overnight before being stimulated with insulin, at
indicated doses. Cell media was replaced with fresh serum starve DMEM/F12 media containing insulin for 10 min and then lysed
with RIPA buffer for analysis.

Metabolite quantiÞcation
Polar metabolites were quanti�ed by mass spectrometry using the ion-pairing reversed-phase ultra-high performance liquid chro-
matography (IP-RP-UPLC)-MS method, as previously described ( Guo et al., 2016). To compare pre and post differentiation, cells
were harvested before addition of differentiation media (day 0) or at day 4 post-differentiation induction. For insulin stimulation, cells
(day 3 post-differentiation) were serum starved overnight before stimulation with fresh DMEM F12 media (without serum) containing
the indicated doses of insulin for 10 min. At harvest, dishes were placed on ice, medium was aspirated thoroughly, and cells were
immediately scraped into 1 mL 80:20 methanol:water pre-chilled to � 80� C. Samples were transferred to 1.5 mL tubes and equal
amounts of internal standard mixture (see Key Resources Table) was added to every sample. Samples were pulse-sonicated for
20 0.5 s pulses with a probe tip sonicator and centrifuged at 17,000 x g at 4 � C for 10 min. The supernatant was transferred to glass
tubes and dried under nitrogen. All samples were resuspended in 100 mL of 5% w/v sulfosalicylic acid in water and 5 mL was injected
by an Ultimate 3000 UHPLC system coupled to Orbitrap Q Exactive HF mass spectrometer (Thermo). Data were analyzed using
XCalibur software (Thermo). Analyte AUC values were normalized to those of the appropriate internal standards. Analytes not
matched to internal standards were normalized to the internal standard closest in retention time. In parallel to cell harvest, additional
replicate dishes were trypsinized and total cell number and cell volume was determined by Coulter counter (Beckman-Coulter).
Metabolite levels were normalized to total cell volume.

Insulin Stimulation Glucose Uptake
Cells were serum starved O/N on day 4 of differentiation. The next day, cells were washed with warm Krebs Ringer HEPES (KRH)
buffer (pH 7.4; 115mM NaCl, 5mM KCl, 1mM KH 2PO4, 25mM HEPES, 1mM CaCl2) and then 100 nM insulin in KRH buffer was added
to cells for 20 min. 50 nM cytochalasin B was added to some wells for the �nal 10 min of insulin stimulation. After 20 min of insulin
stimulation, all wells were provided 1uCi 3H-2-deoxyglucose for 10 min. Cells were then washed twice with ice cold KRH Buffer.
500 mL of 0.1% SDS was added to collect cells. 400 mL of the cell suspension was added to scintillation vial for counting. Control
cells were plated and differentiated to Day 4 then serum starved O/N and collected for protein quanti�cation on Day 5.

2H2O administration to mice
7 days prior to termination, mice were I.P injected with 0.035 mls/g body weight 0.9% NaCl 2H2O and drinking water was replaced
with 8% 2H2O enriched water. Mice were fasted for 6 h prior to plasma and tissue collection and samples were immediately snap
frozen in liquid nitrogen.

Plasma 2H2O enrichment analysis
The 2H labeling of water from samples or standards was determined via deuterium acetone exchange. 5 mL of sample or standard
was reacted with 4 mL of 10N NaOH and 4 mL of a 5% (v/v) solution of acetone in acetonitrile for 24 h. Acetone was extracted by the
addition of 600 mL chloroform and 0.5 g Na2SO4 followed by vigorous mixing. 100 mL of the chloroform was then transferred to a
GC/MS vial. Acetone was measured using an Agilent DB-35MS column (30 m 3 0.25 mm i.d. x 0.25 mm, Agilent J&W Scienti�c)
installed in an Agilent 7890A gas chromatograph (GC) interfaced with an Agilent 5975C mass spectrometer (MS) with the following
temperature program: 60 � C initial, increase by 20� C/min to 100� C, increase by 50� C/min to 220� C, and hold for 1 min. The split ratio
was 40:1 with a helium �ow of 1 mL/min. Acetone eluted at approximately 1.5 min. The mass spectrometer was operated in the elec-
tron impact mode (70 eV). The mass ions 58 and 59 were integrated and the % M1 (m/z 59) calculated. Known standards were used to
generate a standard curve and plasma % enrichment was determined from this. All samples were analyzed in triplicate.
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In vivo de novo lipogenesis calculations
Calculation of the fraction of newly synthesized fatty acids (FNS) was based on the method described by Lee et al. (1994), where FNS
is described by the following equation:

FNS=
ME

ðn 3 pÞ

Where ME is the average number of deuterium atoms incorporated per molecule (ME = 1 x m1 + 2 x m2 +3 x m3 ...), p is the deuterium
enrichment in water and n is the maximum number of hydrogen atoms from water incorporated per molecule. N was determined us-
ing the equation:

m2

m1
=

ðN � 1Þ
2

3
p
q

As described by Lee et al. (1994) where q is the fraction of hydrogen atoms and p + q = 1. The molar amount of newly synthesized fatty
acids (MNS) was determined by: MNS = FNS x total fatty acid amount (nmoles/mg tissue).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics
Speci�c statistical analysis and SEM speci�ed in �gure legends. Statistical comparisons were done using unpaired, two-tailed
Student’s t test with equal variance, unless otherwise indicated. 2-way ANOVA was used for analysis of body weight differences be-
tween genotypes over time. GraphPad Prism was used for statistical analysis and graphing. Data considered signi�cant are indicated
as follows: *, p < 0.05; **, p < 0.01; ***, p < 0.001.

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-sequencing data reported in this paper is GEO: GSE120504.
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