Iyer, SukanyaMir, AamirVega-Badillo, JoelRoscoe, Benjamin PIbraheim, RaedZhu, Lihua JulieLee, JooyoungLiu, PengpengLuk, KevinMintzer, EstherGuo, DongshengSoares de Brito, JosiasEmerson, Charles P. Jr.Zamore, Phillip DSontheimer, Erik JWolfe, Scot A2022-11-292022-11-292022-09-07Iyer S, Mir A, Vega-Badillo J, Roscoe BP, Ibraheim R, Zhu LJ, Lee J, Liu P, Luk K, Mintzer E, Guo D, Soares de Brito J, Emerson CP Jr, Zamore PD, Sontheimer EJ, Wolfe SA. Efficient Homology-Directed Repair with Circular Single-Stranded DNA Donors. CRISPR J. 2022 Oct;5(5):685-701. doi: 10.1089/crispr.2022.0058. Epub 2022 Sep 7. PMID: 36070530; PMCID: PMC9595650.2573-160210.1089/crispr.2022.005836070530https://hdl.handle.net/20.500.14038/51349While genome editing has been revolutionized by the advent of CRISPR-based nucleases, difficulties in achieving efficient, nuclease-mediated, homology-directed repair (HDR) still limit many applications. Commonly used DNA donors such as plasmids suffer from low HDR efficiencies in many cell types, as well as integration at unintended sites. In contrast, single-stranded DNA (ssDNA) donors can produce efficient HDR with minimal off-target integration. In this study, we describe the use of ssDNA phage to efficiently and inexpensively produce long circular ssDNA (cssDNA) donors. These cssDNA donors serve as efficient HDR templates when used with Cas9 or Cas12a, with integration frequencies superior to linear ssDNA (lssDNA) donors. To evaluate the relative efficiencies of imprecise and precise repair for a suite of different Cas9 or Cas12a nucleases, we have developed a modified traffic light reporter (TLR) system (TLR-multi-Cas variant 1 [MCV1]) that permits side-by-side comparisons of different nuclease systems. We used this system to assess editing and HDR efficiencies of different nuclease platforms with distinct DNA donor types. We then extended the analysis of DNA donor types to evaluate efficiencies of fluorescent tag knockins at endogenous sites in HEK293T and K562 cells. Our results show that cssDNA templates produce efficient and robust insertion of reporter tags. Targeting efficiency is high, allowing production of biallelic integrants using cssDNA donors. cssDNA donors also outcompete lssDNA donors in template-driven repair at the target site. These data demonstrate that circular donors provide an efficient, cost-effective method to achieve knockins in mammalian cell lines.enCopyright © Sukanya Iyer et al. 2022; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License [CC-BY] (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.http://creativecommons.org/licenses/by/4.0/Efficient Homology-Directed Repair with Circular Single-Stranded DNA DonorsJournal ArticleThe CRISPR journal